Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Латунь как катализатор при при окислении

    Цветные металлы являются катализаторами окисления бензинов. В присутствии их окисление углеводородов бензина и смолообразование значительно ускоряются. Например, при хранении в баках автомобилей, где бензин соприкасается с латунной заборной трубкой и латунной сеткой фильтра, смолообразование происходит значи- [c.397]

    Окислительные процессы в маслах ускоряются в присутствии некоторых металлов и их солей. Наиболее активными катализаторами являются медь и латунь, а сталь, цинк и олово не оказывают заметного влияния на окисление. Это нужно учитывать при выборе материалов для изготовления резервуаров и тары, а также деталей масляных и гидравлических систем. [c.104]


    При окислении слоя минерального масла толщиной 0,9—1,8 мм нри 250° медь является более сильным катализатором, чем латунь, алюминий, сталь и чугун. [c.403]

    Окисление гидразина активно протекает в конденсатном тракте в присутствии катализаторов (ионов Си +, Ре + и др.) на поверхности латунных трубок ПНД. Кроме того, гидразин в конденсатном тракте восстанавливает оксиды меди и желез.я, переводя их в формы низшей валентности, способные создавать защитные пленки на поверхности латуни и перлитной стали. [c.196]

    Противоокислительная стабильность масла характеризует способность его противостоять окислительному воздействию кислорода воздуха. Процесс окисления масла кислородом воздуха резко усиливается с повышением температуры. Его ускорению способствуют контакт с металлами (железо, свинец, медь, латунь и др.) и солями органических кислот, действие света, давление. В результате окисления углеводородов масла в нем появляются нейтральные и кислые продукты. К нейтральным продуктам относятся смолы и асфальте-ны, которые повышают вязкость масла, к кислым — органические кислоты, оксикислоты и фенолы. Оксикислоты слабо растворимы в масле и при дальнейшем окислении превращаются в твердые лакообразные вещества, отлагающиеся на горячих частях оборудования, с которым соприкасается масло. Противоокислительную стабильность определяют по ГОСТ 981 методами, основанными на окислении масел в среде кислорода при 120—200 °С или в струе кислорода в присутствии катализатора. [c.252]

    Металлы по каталитическому воздействию на окисление трансформаторных масел располагаются следующим образом медь, латунь (наиболее эффективные катализаторы), никель, железо, цинк, олово и алюминий (менее активные). Установлено также каталитическое действие солей только в начальном периоде. окисления масел. Затем соли разлагаются или адсорбируются продуктами окисления, нерастворимыми в масле, и выходят из сферы реакции. Металлы катализируют окисление в том случае, когда они образуют соли с кислотами, что чаще происходит в присутствии воды и кислорода воздуха. Каталитическое действие металла прекращается, если он покрывается защитной пленкой, образуемой продуктами окисления. [c.18]

    В ряде обзоров, касающихся катализаторов для окисления и дегидрогенизации спиртов, указаны кроме меди другие катализаторы, проверенные в различных исследованиях или рекомендуемые патентами. В качестве катализаторов указаны никель, кобальт, платина, серебро, железо, латунь, сплавы меди с серебром, с цинком, с висмутом, с кадмием, с палладием, а также окислы цинка, олова, хрома, кобальта, ванадия, кадмия, магния, бериллия, циркония, бария, марганца. Затем идут ванадиевокислые соли щелочных металлов, сернистые, фосфористые и т. п. соединения цинка, кадмия, никеля, кобальта, железа, алюминия, кальция и магния, а также расплавленные свинец, смеси солей (хлористый барий с хлористым кальцием, хлористый калий с хлористым натрием и т. п.). [c.148]


    Впрочем щелочи были не единственными, ярименявшимися. при окислении катализаторами. Для этого был Нредлюжда уголь, а также различные металлы, а именно ртуть, медь, латунь и фосфорная бронза.  [c.87]

    Штегер и Боненблюст [311 обстоятельно изучили каталитическое воздействие металлов на окисление трансформаторных масел. Авторы пришли к выводу, что металлы по активности располагаются следующим образом медь и латунь — наиболее эффективные катализаторы, никель, железо, цинк, олово и алюминий оказывают меньшее действие. [c.284]

    Однако, как указывают Одрит и Огг, в присутствии катализаторов (ионов Си +, Р + н др.) скорость реакции между М2Н4 и О2 значительно увеличивается даже на холоду. Это обстоятельство является основной предпосылкой для обработки конденсата турбин, основного конденсата и конденсата греюш,их паров ПНД на энергоблоках гидразингидратом. В этих условиях окисление гидразина кислородом быстро протекает на поверхности латунных трубок конденсаторов и ПНД в результате каталитического влияния меди на скорость реакции (3-15). Кроме того, гидразин восстанавливает окислы железа и меди, переводя их в формы низшей валентности, способные связывать растворенный в воде кислород, тем самым защищая от коррозии сталь и латунь. При применении для обработки конденсата гидразина, как указывают Хелд и др., большо е значение имеет его способность создавать защитные пленки на поверхности латунных трубок. [c.65]

    При пропускании воздуха через технический тетралин, содержащий 0,1 % свободного от меди хлорофилла слоем высотой 5 мм при 70—75° через 24 часа, содержание гидроперекиси достигает 37% [284]. В аналогичных условиях без катализатора или в присутствии стеарата марганца содержание гидроперекиси составляет 17 и 27% соответственно. При окислении технического тетралина, содержащего 0,1 %) стеарата магния, кислородом воздуха нри 70—75° в термостатированнЕлх трубках из латуни, меди, монель-металла, УзА-стали и железа за 50 час. 1,2,3,4-тетрагидро-нафталип-1-гидроперекись получается с выходами соответственно 37,5 36,0 35,2 29,4 и 21,1% к продуктам окисления. В посеребренной термостатированной трубке выход гидроперекиси составляет 35,6% [285]. [c.530]

    При окислении метана на различных катализаторах и водорода на платине нами установлено, что, по-видимому, существует два различных механизма гетерогенно-гомогенных процессов каталитического окисления. Мы проверили, что метан очень хорошо окисляется в СО2 и Н2О на асбесте, никеле, серебре, пермутите, железе, окиси цинка, смеси окиси цинка с окисью меди, силикагеле, размолотом кварце, латуни и других катализаторах. Даже в условиях закалки формальдегид появляется лишь в небольших количествах. Только на кварце, окиси бериллия, фарфоре и некоторых других катализаторах СН2О образуется в значительных количествах, но при одном обязательном условии — применении закалки. Без нее образуются СОг, Н2О и лишь небольшие количества формальдегида. [c.69]

    В литературе отмечены многочисленные факты коррозионного разрушения под воздействием ртути аппаратуры из алюминиевых сплавов, свинца, адмиралтейского сплава, углеродистой стали и других материалов [20]. Амальгамирование меди, латуни, олова и других цветных металлов сопровождается изменением электродных потенциалов и возникновением контактной коррозии. При этом иногда обнаруживается коррозионное растрескивание сплавов этих и некоторых других металлов. Даже нержавеюшие стали в присутствие ртути и в особенности ее растворимых солей могут подвергаться значительной коррозии в таких жидкостях, к действию которых эти стали обычно устойчивы. Следует особенно внимательно наблюдать за тем, чтобы ртуть и ее соединения не разносились по аппаратуре и не загрязняли ее. Здесь уместно напомнить о том, что источником ртутных загрязнений в производстве может быть не только ртутный катализатор, но и разбитые термометры, манометры или другие приборы, вследствие чего ртуть иногда обнаруживается там, где ее, казалось бы, не должно быть. В аппаратуре ацетальдегидного производства ртутные загрязнения могут находиться во многих местах и в значительных количествах, поэтому при ремонте аппаратов и трубопроводов следует принимать особые меры предосторожности. Ртуть является сильным ядом, проникающим в человеческий организм через кожу и дыхательные органы. Кроме того, в присутствии азотной кислоты и окислов азота, находящихся в аппаратуре цеха регенерации контактного раствора, ртуть может образовывать взрывчатое соединение — гремучую ртуть. По этой причине, приступая к разборке и ремонту трубопроводов на установке окисления нитрозных газов, следует предварительно испытать небольшую пробу продуктов, отложившихся на стенках труб. Если лабораторная проба на удар дает воспламенение, что указывает на наличие гремучей ртути, то трубопроводы перед ремонтом следует хорошо промыть аммиачной водой. [c.34]

    Вторичные спирты, полученные при гидратации С4—Св-олефинов с прямой цепью (см. гл. VII), превращаются в соответствующие им кетоны точно так же, как получается ацетон, при парофазном дегидрировании или каталитическом окислении воздухом изопропилового спирта. Дегидрирование втор-бутилового спирта в метилэтилкетон протекает при 350°, т. е. при более низкой температуре, чем дегидрирование изопропилового спирта (380° С) [2]. Технические нормальные пентаноны и гексаноны представляют собой смеси, состав которых соответствует составу исходных технических спиртов. Эти спирты дегидрируют в соответствующие кетоны при 455—485°С над катализатором (латунь) [38]. [c.313]


    Окисление метана на меди, платине, никеле, латуни, асбесте, силикагеле и некоторых других изученных катализаторах даже в условиях высокоэффективной закалки приводит лишь к появлению углекислого газа и воды. На кварце и некоторых других найденных нами катализаторах метан в тех же условиях окисляется главным образом в формальдегид. Из этого следует, что возможны два типа гетерогенно-гомогенного течения реакций. В одном случае цепи зарождаются радикалами, возникающими на поверхности катализатора. Развитие другого типа цепных объемных процессов обеспечивается лабильными продуктами, десорбирующимися с поверхности контакта. При этом в ходе развития цепей лабильные промежуточные продукты снова возрождаются. [c.194]


Смотреть страницы где упоминается термин Латунь как катализатор при при окислении: [c.163]    [c.157]    [c.80]    [c.317]    [c.76]   
Химия углеводородов нефти и их производных том 1,2 (0) -- [ c.976 , c.979 ]




ПОИСК





Смотрите так же термины и статьи:

Латуни



© 2025 chem21.info Реклама на сайте