Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Медь контакт с другими металлами

    Интересно отметить, что контакт различных металлов существенно влияет на коррозионно-усталостную прочность алюминиевых сплавов. Как видно из рис. II.б, медь больше других металлов снижает коррозионную усталость алюминиевых сплавов, контакт со сталью 45 сказывается значительно меньше, а цинк повышает предел коррозионной усталости. [c.61]


    Медь, серебро и золото очень широко применяются в технике. Во многих областях используются и их соединения. Медь 99,9%-ной чистоты используется в электротехнике для изготовления электрических проводов, контактов и пр. Большое промышленное значение имеют сплавы меди с другими металлами. Важнейшими из них являются латуни, бронзы и медно-никелевые сплавы. Латунь содержит до 45% цинка (остальное Си). Из нее изготовляют трубы для конденсаторов и радиаторов, детали механизмов, в частности часовых. Латунь с высоким содержанием меди — томпак — благодаря своему красивому внешнему виду используется для изготовления украшений. Бронзы подразделяются на оловянные, алюминиевые, кремниевые, свинцовые и др. Очень прочными являются бериллиевые бронзы они применяются для изготовления пружин и других ответственных деталей. [c.306]

    Ранее уже было сказано, что свинец может существовать в растворах серной кислоты только благодаря тому, что водород выделяется на нем с очень большим перенапряжением. Но если на поверхность свинца попадут частицы металлов, на которых перенапряжение выделения водорода меньше, чем на свинце, то водород, вытесняемый свинцом из раствора, начнет выделяться на них, а свинец будет переходить в раствор. При заряде использование тока на выделение свинца упадет, так как ток начнет тратиться на выделение водорода. Чтобы избежать этих вредных явлений, необходимо при изготовлении аккумуляторов применять все материалы только высокой степени чистоты, в первую очередь, не содержащие железа, меди и других металлов с низким перенапряжением для выделения водорода. Но присутствие одного из таких металлов — сурьмы — избежать трудно. Она обычно входит в состав сплава токоотводов (решеток), на которые наносятся активные массы. При заряде сурьма из токоотвода положительного электрода переходит в раствор и затем отлагается на поверхности отрицательного электрода. Чтобы повысить перенапряжение выделения водорода на сурьме, в электролит или в активную массу добавляют специальные вещества — ингибиторы, в частности а-оксинафтойную кислоту. Это значительно уменьшает саморазряд и газовыделение в аккумуляторах. Саморазряд положительного электрода возникает, в основном, в случае загрязнения электролита веществами, способными окислиться в контакте с РЬОг, в частности, ионами железа, как это описано для марганцево-цинковых элементов. ГОСТ 959-0—71 допускает для автомобильных аккумуляторов потерю емкости от саморазряда не более 10% за 14 сут хранения при 20 5°С. Поскольку саморазряд, в основном, происходит из-за растворения свинца в серной кислоте, то естественно, что с ростом температуры и концентрации кислоты в электролите саморазряд увеличивается. [c.364]


    Водные растворы уксуснокислых солей обладают значительно меньшей коррозионной активностью, чем растворы уксусной кислоты (ср. табл. 2 и 27). Однако применение стальной аппаратуры и коммуникаций не может быть рекомендовано ни для солей щелочных металлов, вызывающих ржавление, ни для солей тяжелых металлов, обладающих вследствие гидролиза кислой реакцией, обусловливающей кислотную коррозию. Кроме того, при контакте растворов уксуснокислой меди и некоторых других солей тяжелых металлов с железом на последнем высаживается медь или другой металл, обладающий более высоким потенциалом, чем железо, что приводит к интенсивной контакторной коррозии. [c.130]

    Медноникелевые сплавы с большим содержанием никеля чаще всего являются катодами по отношению к меди и другим металлам, однако можно допустить контакт их как со сталями, так и с медными сплавами. Рекомендуется проявлять осторожность при соединении медноникелевых сплавов с алюминием и свинцом. Контакт меди со свинцо и, судя по литературе, можно осуществлять в любых атмосферах. В электролитах с повышенным содержанием сульфатов довольно-быстро образуется труднорастворимый слой сернокислого свинца, обладающий изолирующими свойствами. [c.142]

    Получив электрический заряд, частицы полимеров, имеющих удельное объемное сопротивление ру более 10 ом см, длительное время сохраняют его, медленно разряжаясь даже при контакте с проводниками электричества. Полная разрядка порошков является трудной задачей. Для снятия заряда порошки рассыпают тонким слоем на листе меди или другого металла, который заземляют и выдерживают в таком виде длительное время. Однако и в этом случае практически не удается достичь полного изоэлектрического состояния. Следует заметить, что подогрев полимеров снижает ру и способствует более легкой разрядке частиц. [c.34]

    Магний — очень электроотрицательный металл (1 ° = —2,37 в> и потому из конструкционных материалов наиболее коррозионно активен. Склонность к пассивированию позволяет ему быть стойким в растворах хромовой кислоты. Однако он не стоек в других кислотах, за исключением плавиковой, в которой на поверхности металла образуется нерастворимая в этих условиях защитная пленка, состоящая из Mg 2. Магний стоек в растворах аммиака и щелочей (до 50—60° С). Фосфаты образуют защитную пленку на магнии и его сплавах, повышая стойкость от разрушения в воде и водных растворах солей. Магний не стоек в органических кислотах, в нейтральных солевых растворах и даже в воде, особенно, если она содержит углекислоту. Хлорсодержащие флюсы при попадании в сплав сильно повышают скорость коррозии отливки. Контакт с электроположительными металлами, а также загрязнение магния железом, никелем, медью и другими металлами с низким перенапряжением водорода повышают скорость коррозии. Цинк, свинец, кадмий,-марганец и алюминий менее опасны в этом отношении. В атмосферных условиях в отличие от растворов электролитов магний корродирует с кислородной деполяризацией. Легко окисляется на воздухе при повышенных температурах. [c.57]

    Металлы платиновой группы получают путем разделения самородных смесей металлов, отделения от руд и выделения из шламов, образующихся при производстве никеля, меди и других металлов. Платиновые металлы широко используются в качестве катализаторов различных процессов, а также для изготовления лабораторной посуды, анодов электролизеров. Вследствие высокой твердости и химической стойкости они используются для изготовления контактов и других ответственных деталей электротехнического и радиотехнического оборудования, медицинских инструментов. Сплавы с КЬ или 1г применяются в термопарах. Благодаря способности растворять водород, сплав палладия с серебром применяется для очистки водорода. [c.377]

    Карбиды при взаимодействии с водой выделяют ацетилен или смеси углеводородов. Карбиды щелочных металлов при контакте с водой реагируют со взрывом. Карбиды серебра, меди и некоторых других металлов нестабильны. При контакте с водой реакция про- [c.37]

    При контакте магния с другими металлами скорость коррозии магния определяется величиной перенапряжения водорода иа этих металлах. Такие металлы, как железо, никель, медь, имеющие низкое перенапряжение водорода, сильно понижают коррозионную стойкость магния менее опасны контакты магния с металлами, имеющими высокое перенапряжение водорода (свинец, цинк, кадмий). [c.274]

    Прямой синтез органохлорсиланов основан на реакции хлорпроизводных с металлическим кремнием или лучше с контактной массой, содержащей не только кремний, но и медь. Добавки меди позволяют снизить температуру реакции и избежать развития пиролитических процессов, снижающих выход целевых продуктов. Кроме меди были испытаны добавки других металлов (алюминий, цинк, серебро), но кремне-медный контакт оказался наиболее дешевым и эффективным. Его готовят сплавлением кремния с медью, спеканием их порошков в атмосфере водорода или химическим осаждением меди на кремнии. Контакт обычно содержит 80—95 /о кремния и 5—20% меди. [c.305]


    Химическая стабильность. В большинстве случаев под химической стабильностью понимают устойчивость смазок к окислению кислородом воздуха, хотя в широком смысле — это отсутствие изменения свойств смазок при воздействии на них химических реагентов (кислот, щелочей, кислорода и т. п.). Окисление смазок приводит, как правило, к разупрочнению, ухудшению коллоидной стабильности, смазочной и защитной способности и других свойств (рис. 99), Стабильность к окислению важна для смазок, заправляемых в узлы трения 1—2 раза в течение 10—15 лет, работающих при высоких температурах, в тонких слоях и в контакте с цветными металлами. Медь, бронза, олово, свинец и некоторые другие металлы и сплавы ускоряют окисление смазок. [c.363]

    Восстановление никеля из его солей с помощью гипофосфита самопроизвольно начинается лишь на металлах группы железа и на палладии, которые катализируют этот процесс. Для покрытия других, каталитически неактивных металлов, например меди или латуни, необходим контакт этих металлов в растворе с алюминием или с другими, более электроотрицательными, чем никель, металлами либо предварительное Погружение на короткое время (10—60 с) в разбавленный раствор хлористого палладия. [c.411]

    Растворы 1 3 применяются для оловянирования меди и ее сплавов методом погружения, растворы 4 и 5 рекомендуются для покрытия оловом изделий из стали и других металлов с применением контакта из цинка, раствор 6 для покрытия алюминия При покрытии мелких деталей во вращающихся барабанах (например, в растворе 4) продолжительность процесса составляет 2—4 ч [c.89]

    Полифосфаты хорошо защищают от коррозии конструкции, состоящие из стали и других металлов. Например, для защиты стали, находящейся в контакте с медью и латунью в циркулирующей воде, в воду необходимо ввести 25—50 мг/л гексаметафосфата. С повышением температуры воды содержание в ней гексаметафосфата должно быть увеличено. Так, при температуре воды до 100 °С и условии ее циркуляции надежная защита конструкции достигается при содержании гексаметафосфата 50—100 мг/л. [c.89]

    При конструировании теплообменных аппаратов можно в значительной степени уменьшить интенсивное развитие коррозии. Так, следует избегать неблагоприятных металлических контактов, которыми могут служить медь, ее сплавы, свинец и другие металлы. При конструировании аппаратов и трубопроводов необходимо предусматривать отвод конденсата из нижних точек. [c.81]

    Однако водород выделяется на цинке с большим перенапряжением, что тормозит эти процессы и практически позволяет использовать цинк в качестве отрицательного электрода. Если на поверхности пинка будут присутствовать металлы, на которых перенапряжение для выделения водорода меньше, чем на. цинке (например, медь, железо), то водород будет выделяться на этих металлах, и коррозия цинка резко усилится. Появление таких металлов может иметь место при использовании цинка или электролита недостаточной чистоты. Цинк, как металл электроотрицательный, вытесняет более благородные металлы из раствора, и они осаждаются на его поверхности, усиливая саморазряд. Наличие в электролите железа н других металлов переменной степени окисления может вызвать саморазряд как отрицательного, так и положительного электродов. На положительном электроде ионы железа будут окисляться до Ре +, на что будет расходоваться МпОг. Диффундируя к отрицательному электроду, ионы Ре + будут в контакте с цинком восстанавливаться до Ре + (или до металла), на что будет расходоваться цинк. Коррозия цинка в присутствии кислорода может происходить и без выделения водорода  [c.326]

    Фотометры с фотоэлементами с запирающим слоем. Чувствительная часть фотоэлемента с запирающим слоем состоит из металлической пластинки, на которую нанесен слой полупроводника, например закиси меди или селена. Полупроводящий слой в свою очередь покрывают пленкой серебра или другого металла, настолько тонкой, чтобы она была прозрачна и в то же время могла служить электрическим контактом. Когда лучистая энергия падает на фотоэлемент, проходя через прозрачную поверхность, между металлической пластинкой и поверхностным электродом возникает разность потенциалов, причем электрод заряжается отрицательно. Селеновый элемент может применяться для участка спектра 300—800 ммк с максимальной чувствительностью В об- [c.37]

    Первым на катоде будет выделяться металл, имеющий наибольший окислительный потенциал, затем последовательно все другие металлы с потенциалом более положительным, чем у алюминия (—1,67 в). Если металл анода содержит включения другого металла, между ними образуется гальванический микроэлемент. Если металл включения в аноде будет иметь потенциал меньший, чем у меди, и, следовательно, выполнять роль катода, то медь будет выделяться на аноде, что приведет к ошибке в анализе. Причиной отложения меди на аноде может являться плохой контакт между анодом и катодом. Вследствие этого ток будет ослаблен или прекратится совсем и система будет представлять собой просто алюминиевый стержень, опущенный в раствор, содержащий ионы меди. В этой системе алюминий, имеющий отрицательный потенциал, будет терять электроны, а ионы меди, имеющие положительный потенциал, приобретать их и выделяться в элементарном состоянии на алюминиевой пластинке  [c.360]

    Каталитическую активность кобальтового, никелевого, железного, медного и серебряного катализаторов авторы [287] связывают со способностью указанных контактов адсорбировать водород и гидрируемые соединения. Адсорбция водорода на N1 и Со намного сильнее, чем на Ре, Си и Ag, что коррелирует с каталитической активностью. Железо больше других металлов адсорбирует этилен и, по-видимому, поэтому является более активным катализатором, чем медь и серебро. [c.97]

    К таким факторам относятся образование защитной поверхностной пленки, концентрация в воде растворенного кислорода и ионов металлов, скорость и температура воды, а также биологическое обрастание. Наличие электрического контакта меди с другим металлом чаще всего отрицательным образом сказывается на коррозионном поведении второго элемента такой гальванической пары (скорость его коррозии возрастает). Независимо от гальванических эффектов, обычной формой коррозии латуней с высоким содержанием цинка является обесцинко-ванпе. Коррозионные факторы, перечисленные выше, часто взаимосвязаны и их относительная важность может зависеть от конкретных условий. [c.97]

    При формировании адгезионных соединений в среде воздуха может происходить интенсивное окисление металла под расплавленной полимерной пленкой и возникновение в соединении слабого граничного слоя оксида металла. Чем выше температура формирования (юединений, термостабильнее полимер и тоньше полимерная пленка, тем интенсивнее окисляется металл в зоне адгезионного контакта. Окисление стали, меди и других металлов наблюдается при формировании покрытий из расплавов полиэтилена, пентапласта, политетрафторэтилена и других полимеров. Умеренное окисление металла под слоем полимера способствует увеличению прочности адгезионного соединения и его стойкости к [c.39]

    Чтобы ускорить процесс фракционирования, можно предварительно удалить наиболее мелкие частицы, суспендируя смолу в цилиндрическом сосуде и удаляя надосадочную жидкость после 6-часовой экспозиции. После фракционирования ионообменную смолу обрабатывали последовательно 1 н. растворами соляной кислоты и едкого натра для удаления ионов меди и других металлов, сорбированных на смоле во время фракционирования, за счет контакта воды с металлическими частями ультратермостата. Однако при использовании ультратермостата Й-б Вобсера с фарфоровым баком подобные загрязнения смолы минимальные. [c.129]

    Перечислен 1ые карбонилы могут быть получены при взаимодействии с окисью углерода не только металлов, но и их соединений, причем часто реакция идет только в присутствии восстановителей или других веш,еств, способных перевести исходное соединение металла в форму, легче присоединяющую карбонильные группы. Для тех металлов, которые непосредственно не реагируют с окисью углерода, это единственный путь получения карбонилов. Можно предположить, что при карбонилированни в присутствии восстановителя металл вначале восстанавливается до свободного состоя)1ня, а зате.м, вступая в неносред-ственный контакт с окисью углерода, образует карбонил. Сульфид никеля, например, образует карбонил только в присутствии железа, меди или других металлов. Реакция идет в две стадии  [c.9]

    На рис. 25 показаны результаты, полученные при добавлении только антиокислителя (н-бутил-п-аминофено-ла) и антиокислителя совместно с деактиватором меди (N,N -ди aлицилидeнэтилeндиaминoм) в восстановлении индукционного периода окисления, понижающегося в присутствии меди (0,0001%). При добавлении деактиватора металла также полностью восстанавливается индукционный период, снижающийся под влиянием других металлов [2—4]. При использовании антиокислителей совместно с деактиваторами металла значительно снижается смолообразование в бензинах при хранении, так как их окисление происходит при постоянном контакте с металлами. Особенно наглядные результаты получены при хранении бензинов в жарком климате получаемый [c.128]

    Даже если скорость коррозии медных труб не слишком высока и они эксплуатируются достаточно долгое время, то продукты коррозии меди и медных сплавов, которые образуютсяМ1ри наличии в воде угольной и других кислот, могут вызывать окрашивание сантехнического оборудования. При контакте с такой водой усиливается коррозия железа, оцинкованной стали и алюминия. Это связано с протеканием реакции замещения, при которой металлическая медь осаждается на основном металле и образуются многочисленные небольшие гальванические элементы. При обработке кислых вод или вод с отрицательным значением индекса насыщения известью или силикатом натрия скорость коррозии падает до достаточно низких значений, чтобы прекратилось окрашивание и усиление коррозии других металлов, за исключением алюминия. Он чувствителен к присутствию в растворе чрезвычайно малых количеств ионов Си +, и обычная обработка воды не способна уменьшить содержание этих ионов до безопасного уровня. Ввиду токсичности растворенной меди служба здравоохранения США установила значение ее предельно допустимой концентрации в питьевой воде, равное 1 мг/л [7]. [c.328]

    Применение меди, серебра, золота и их соединений. Больше других металлов этой додгруппы, как наиболее доступный металл, используется медь. Электролитически рафинированная медь с содержанием 99,90—99,95% меди используется для изготовления кабелей, проводов, контактов и пр. Сплавы меди с добавками цинка (латунь), никеля (мельхиор, нейзильбер), олово (бронза), бериллия, алюминия и др. находят самое разнообразное применение в судо-, авто-, авиа-и аппаратостроении, для изготовления литых изделий, посуды и пр. [c.357]

    В гетерогенных системах, содержащих заряженные частицы, на границе раздела фаз неизбежно возникв ет разность электрических потенциалов. Так, на границе соприкосновения двух разнородных металлов возникает контактная разность потенциалов. Это явление впервые установил Вольта (1800 г.). Раз- ность потенциалов появляется за счет перехода электронов из одного металла в другой, в результа- те чего металлы приобретают разноименные заряды. Знак заряда металлов определяется работой выхода электронов, т. е. энергией, которая необходима для выделения электрона из металла. Из двух соприкасающихся металлов положительно заряжается тот, работа выхода электрона у которого меньше. Например, работа электрона для меди и железа соответстч венно равна 7,12 10- и 7,90-10 Дж. Так как ра-( бота выхода электрона у меди меньше, чем у железа, то при контакте этих металлов электроны переч ходят от меди к железу, в результате медь заряжав ется положительно, а железо — отрицательно. [c.129]

    В пленочных и полупроводниковых микросхемах широко используются различные металлы и сплавы, у которых стабильность электрических характеристик сочетается со стойкостью их к химической и электрохимической коррозии. Для проводников и контактов используются металлы с высокой электрической проводимостью золото, серебро, медь и алюминий, причем последний чаще всего для внутрисхемных соединений. В качестве материалов для резистивных пленок преимущественное применение нашли тантал, нихром, хромосилицидные и другие сплавы на основе хрома и тантала. Одни из названных металлов являются коррозионно-стойкими вследствие их высоких окислительно-восстановительных потенциалов (Аи, Ад), другие — из-за самопроизвольного образования пассивирующих оксидных пленок на их поверхности (А1, N1, Сг, Та). Однако при контакте резисторов из этих металлов и алюминия невозможно избежать образования гальванопар Сг—А], Ы —А1 и др., которые чрезвычайно чувствительны к любого рода загрязнениям. Этими загрязнениями могут оказаться остаточная влага, следы кислорода и некоторые химические вещества, выделяющиеся из стенок корпуса и защитного покрытия при технологических операциях герметизации и защиты микросхем. В результате электрохимической коррозии алюминий в месте контакта разрушается, что в итоге приводит к разрыву электрической цепи. [c.281]

    В качестве представителя сплавов никеля с медью можно назвать сплав, содержащий 67—69% N1, 28 /о Си, 1,5—2,5% Ре и 1—2% Мп. Этот сплав, известный под названием моиельметалл, характеризуется очень высокой прочностью и пластичностью, обладает хорошими антикоррозийными свойствами. Монель-металл широко используется в нефтехимическом аппаратостроении. Однако высокая коррозионная стойкость этого сплава имеет место лишь тогда, когда монель-металл работает без контакта с другими металлами, или сплавами. [c.159]

    Вследствие действия ряДи факторов, ограничивающих использовагше золота в технике, золотые покрытия зaмeнйJ0т сплавами золота и других благородных металлов при покрытии контактов, сплавами золота с медью, никелем, серебром и другими металлами для покрытия дета лей часов, ювелирных изделий и т п, аподированнем алюминия с окрашиванием пленки под пвет золота, понно-плазменными покрытиями нитридом титана [c.132]

    Процесс образования N1 — Р-покрытнй начинается самопроизвольно только на некоторых каталитически активных металлах К их числу относятся никель, железо кобачьт палладий и алюминий Однако никелевое покрытие можно нанести и иа другие металлы (например на медь нтн татунь) если их после погружения в раствор привести в контакт с более электроотрицательным металлом чем никель (например с алюминием) В результате контактирования на поверхности покрываемого металла за счет работы возникающего при этом гальванического элемента образу [c.5]

    Первый слой покрытия на диэлектрики наносят путем химического восстановления металла. Наиболее изученными являются процессы никелирования, кобальтирования и меднения. Зти процессы — автокаталитические, т. е. процесс восстановления (например, солей никеля гипофосф итом натрия) начинается самопроизвольно только на поверхности некоторых металлов — никеле, кобальте, железе, палладии и алюминии, — которые являются катализаторами. Однако никелевые покрытия можно нанести и на другие металлы и сплавы, например медь, латунь и платину, если эти металлы после погружения их в раствор привести в контакт с никелем или другими более электроотрицательными металлами. На цинке и кадмии процесс химического восстановления никеля совсем не протекает. После нанесения тонкого слоя никеля на них покрытие само катализирует процесс восстановления металла. Одним из основных факторов, определяющих скорость процесса, является температура раствора, оптимальной является температура 96— 98 X. [c.335]

    В контакте с другим металлом олово обычно служит анодом по отношению к меди и железу, а к цинку и алюминию — като дом. Однако точное соотношение электродных потенциалов мо жет немного изменяться в зависимости от параметров коррози онной среды. Стойкость олова в щелочах слабая из-за раство рения окисной пленки, но действие кислот происходит медленно особенно при отсутствии достаточного количества кислорода Стойкость олова в органических кислотах особенно высокая [c.121]

    Контакты алюминиевых сплавов со сталью, в морской воде и в морской атмосфере вызывают сильную коррозию алюминиевых сплавов [81]. Контакты алюминия с алюминиевыми сплавами, содержащими медь, приводят > приморской атмосфере к коррозионному разрушению алюминия. По дан- ым ряда авторов, даже оксидирование алюминия не дает положительных >езультатов при его защите от контактной коррозии. Некоторые исследова- ели считают контакт алюминиевых сплавов с другими металлами допустимым при условии их предварительной защиты цинком, алюминием или кад-1ием, но не рекомендуют применять алюминий в паре с медью и медными плавами, с никелем и никелевыми сплавами. В последнем случае рекомен- [c.83]


Смотреть страницы где упоминается термин Медь контакт с другими металлами: [c.187]    [c.378]    [c.199]    [c.10]    [c.55]    [c.161]   
Коррозия пассивность и защита металлов (1941) -- [ c.659 ]




ПОИСК





Смотрите так же термины и статьи:

Другие металлы

Контакт с другими металлами

Медь ГЦК-металлы



© 2025 chem21.info Реклама на сайте