Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Каталитическое действие металлов

    Почти для всех светлых топлив нормируется йодное число, как показатель наличия в них непредельных углеводородов, обусловливающих химическую нестойкость этих продуктов. Под влиянием температуры, кислорода воздуха, каталитического действия металлов, света и других факторов непредельные углеводороды быстро окисляются и полимеризуются. Это приводит к осмолению топлив и ухудшению их эксплуатационных свойств. [c.200]


    Можно полагать, что торможение окисления сернистыми соединениями больше обусловлено их способностью пассивировать каталитическое действие металлов вследствие образования защитной пленки, чем непосредственным воздействием этих соединений на окислительные цепи. [c.90]

    Каталитическое действие металла практически прекращается, если он покрывается пленкой, образованной продуктами окисления. Следовательно, в работающих двигателях и механизмах роль катализаторов играют главным образом трущиеся поверхности, с которых защитная пленка непрерывно удаляется при контакте. [c.196]

    Широко исследовано каталитическое действие металлов на разложение метана по реакции [c.24]

    Каталитическое действие металлов, имеющих несколько валентных состояний, можно объяснить переходом электронов  [c.154]

    Зональное распределение кокса в зерне катализатора выглядит следующим образом. Кокс первой, низкотемпературной зоны (375 °С) окисления локализован в области каталитического действия металла, а второй -высокотемпературной (440-460 °С) - преимущественно на носителе. Перераспределение кокса по зонам окисления можно объяснить деструктивными превращениями (гидрированием кокса) в среде водорода при прогреве, с образованием некоторого количества отложений с небольшим молекулярным весом, которые могут мигрировать в газовую фазу. На рис. 4.3 представлено распределение кокса по зонам во времени, а на рис. 4.4 - изменение активности и доступной поверхности платины при накоплении кокса на катализаторе. [c.52]

    На втором этапе при температуре 350-480°С из катализатора выгорает основная масса кокса. При этом кокс, локализованный в области каталитического действия металла выгорает при температуре 375°С, а кокс носителя - при температуре 440-460°С. Платина катализирует окисление, реакция идёт с выделением тепла, поэтому на этой стадии важно не допустить перегрева слоя катализатора и спекания платины. С этой целью концентрация кислорода в циркулирующем инертном газе не должна превышать 1% об. [c.54]

    Каталитическое действие металлов и скорость расходования антиокислителей. При исследовании каталитического действия ме- [c.249]

    Некоторое количество 50д может образовываться и в результате каталитического действия металла стенок цилиндров. Не исключено также и гомогенное окисление 50., в пламени.. [c.302]

    На индукционный период влияет не только химический состав тошшва, но и внешние факторы - тешература, величина поверхности, соприкасающейся с воздухом, каталитическое действие металлов и т.д. [c.44]


    Назначение. Деактиваторы (инактиваторы, пассивато-ры) металлов — это присадки, подавляющие каталитическое действие металлов на окисление топлив. Деактиваторы, как правило, добавляют к топливу совместно с антиокислителями в концентрациях, в 5—10 раз меньших, чем антиокислитель. Они могут быть также компонентами двух- и трехкомпонентных присадок [1 — 11]. Установлено, что металлы переменной валентности являются сильными катализаторами окисления углеводородных топлив [1—5, II —17]. Металлы постоянно контактируют с топливами — в нефтезаводской, перекачивающей аппаратуре и в двигателях, входят в виде микропримесей в их состав. В топливных дистиллятах обнаружено присутствие алюминия, берилия, ванадия, висмута, железа, золота, кремния, калия, кальция, кобальта, меди, молибдена, натрия, никеля, олова рубидия, серебра, свинца, стронция, титана, цинка и др. [18—21]. [c.122]

    Расход многих антиокислительных присадок резко возрастает в присутствии катализаторов окисления — главным образом меди и ее сплавов [ 176]. Поэтому за рубежом для подавления каталитического действия металлов в топлива вводят деактиваторы металлов. В отечественных реактивных топливах деактиваторы металлов не применяют. [c.197]

    Для устранения каталитического действия металлов можно вводить в масло специальные вещества, которые образуют на поверхности металла защитные пленки, препятствующие взаимодействию кислотных продуктов окисления масел с поверхностью металла. [c.14]

    Таким образом, на термоокислительную стабильность синтетических смазочных масел влияют температура, каталитическое действие металлов и строение углеводородов. Значение этих факторов особенно увеличивается в условиях работы современных двигателей. Чтобы повысить верхний предел рабочей температуры синтетических масел и продлить срок их службы в них необходимо вводить антиокислительные присадки и деактиваторы металлов. [c.171]

    Значение энергии активации окисления топлива ДТ-23, контактирующего с медной поверхностью, на -90 кДж/моль меньше таковой для автоокисления аналогичного образца в отсутствие меди, что свидетельствует о каталитическом действии металла на окисление топлива. [c.130]

    Длительное взаимодействие масла с кислородом воздуха при достаточно интенсивной циркуляции его в системе в совокупности с каталитическим действием металла (обычно железа и меди) обусловливает значительное [c.497]

    При конструировании змеевика большое значение имеет правильный выбор материалов. Материал стенок реактора оказывает влияние на процесс пиролиза, причем олефины более чувствительны к каталитическому действию металлов, чем парафины. В присутствии никеля, кобальта и железа разложение сырья на углерод н водород усиливается. Наиболее активным металлом является никель. При наличии хрома в составе никелевого сплава каталитическое действие никеля снижается. [c.56]

    Известно, что начало образования углеродистых продуктов связано с окисляемостью масла. Не останавливаясь на основных закономерностях окисления масел (см. раздел 2.3), отметим лишь, что одним из наиболее важных моментов данного процесса является каталитическое действие металла [223, 224]. На интенсивность протекания противоокислительных процессов влияют также твердые продукты, диспергированные в объеме масла (рис. 4.7), причем каталитическая активность (резкое увеличение вязкости масла) отмечается в случае проявления ими электроноакцепторных свойств (графит, сажа), а ингибирующая способность характерна для (Мо52)[223]. [c.211]

Рис. 24. Чувствительность различных антиокислителей (содержание фактических смол после окисления) к каталитическому действию металла (окисление керосина термического крекинга при 100 °С в течение 4 ч) Рис. 24. <a href="/info/100786">Чувствительность различных</a> антиокислителей (содержание <a href="/info/398372">фактических смол</a> <a href="/info/874475">после окисления</a>) к каталитическому действию металла (<a href="/info/416801">окисление керосина</a> <a href="/info/66231">термического крекинга</a> при 100 °С в течение 4 ч)
    В книге рассмотрены катализаторы для сероочистки исходного сырья, двухстадийного парового риформинга углеводородов, конверсии окиси углерода, для гидрирования кислородсодержащих соединений и синтеза аммиака. В каждом случае подробно рассмотрены вопросы изготовления, испытания и применения конкретного катализатора. Отдельно изложены общие вопросы катализа, имеющие отношение к инженерным проблемам, — каталитическое действие металлов и их соединений, принципы формирования структуры катализаторов н технологии их изготовления. [c.7]

    Каталитическое действие металлов [c.22]

    Об этом же свидетельствует и работа Фенске [41]. По данным этого автора, металлы катализируют окисление в том случае, когда они образуют соли с кислотами, что чаще происходит в присутствии воды, адсорбируемой металлом, и кислорода воздуха. Каталитическое действие металла прекращается, если он покрывается защитной пленкой, создаваемой продуктами окисления. [c.289]


    Важнейшим эксплуатационным свойством масел, определяющим продолжительность их работы, является стабильность против окисления. В процессе эксплуатации (масел под воздействием кислорода воздуха, высоких температур, нагрузок, каталитического действия металлов углеводороды, входящие в состав масел, подвергаются окислению, деструкции, полимеризации и ряду других химических превращений. При этом вследствие образования и накопления кислородсодержащих соединений и углеродистых продуктов уплотнения изменяется состав масел и ухудшаются их эксплуатационные свойства. Продукты окисления плохо растворимы в маслах, способствуют образованию осадков и нагаров, вызывают коррозию и усиливают износ деталей. С целью предотвращения или уменьшения окисляемости масел при хранении и эксплуатации широко применяют антиокислительные присадки.  [c.302]

    Помимо ингибиторов окисления существуют и другие присадки, повышающие стабильность масел против окисления — это деактиваторы и пассиваторы металлов. Деактиваторы предотвращают или уменьшают каталитическое действие маслорастворимых солей металлов вследствие образования комплексов. Пассиваторы образуют на поверхности металла хемосорбированные пленки, защищающие нефтепродукт от каталитического действия металла. Многие антиокислители выполняют одновременно и функции противокоррозионных присадок, предотвращая образование низкомо-лекулярных коррозионно-агрессивных продуктов окисления. [c.303]

    В результате окисления масла изменяются его физико-химиче-ские и эксплуатационные свойства увеличивается вязкость, возрастает коррозионная агрессивность, ухудшаются противозадирные свойства. Скорость и глубина окисления масла зависят от длительности окисления, температуры масла, каталитического действия металла, концентрации кислорода. Наибольший ускоряющий эффект на окисление масла оказывает его температура. Состав базового масла также оказывает влияние на окисляемость трансмиссионного масла. Так, при уменьшении в основе содержания остаточного компонента наблюдается пропорциональное увеличение термоокислительной стабильности масла. [c.189]

    Некоторое количество 80з может образоваться и в результате каталитического действия металла стенок цилиндров. Не исключается и возможность гомогенного окисления 80, в пламени. [c.306]

    Детальные исследования по определению оптимальной концентрации деактиваторов для подавления каталитического действия металлов, встречающихся при хранении и применении автомобильных бензинов, показали, что увеличение концентрации от О до 0,010% почти пропорционально увеличивает химическую стабильность бензина, добавление деактиватора в концентрации свыше 0,010% малоэффективно, так как лишь незначительно улучшает стабильность бензинов. Оптимальной концентрацией деактиваторов типа салицилиден-о-аминофенола и дисалицилиденэтилендиамина для химической стабилизации товарных автомобильных бензинов является 0,01%. Следует отметить, что если действие деактиватора заключается в том, что он связывает растворенные ионы металла, то можно предположить, что добавление деактиватора может вызвать увеличение степени растворения металла в бензине. Для проверки этого предположения были поставлены опыты по окислению бензина в присутствии меди с разным, заведомо большим, количеством деактиватора. Полученные результаты показывают, что присутствие деактиватора не вызывает увеличения степени растворения металла изменение массы медной пластинки при окислении бензина с разным количеством салицилиден-о-аминофенола показано ниже  [c.258]

    Влияние катализатора может сказываться не только на скорости окисления и длительности индукционного периода, но и на внутристадийном превращении одних продуктов окисления в другие, а также на характере конечных продуктов [101]. По некоторым данным, металлы катализируют окисление в основном в тех случаях, когда они образуют соли с кислотами. Чаще всего это происходит в присутствии воды и кислорода воздуха. Каталитическое действие металла прекращается, если он покрывается защитной пленкой, создаваемой продуктами окисления. Большая часть исследователей считает, что основную роль в катализирующем действии солей оказывает катион [96]. При этом, однако, соли одного и того же металла, но разных кислот могут обладать неодинаковой катализирующей активностью, т. е. активность солей может зависеть не только от катиона, но и от аниона. Анион может и не оказывать принципиального действия, а может влиять, например, на растворимость соли в масле и таким образом косвенно воздействовать на эффективность металлического катализатора. [c.77]

    Особенности применения деактиваторов. Для предотвращения каталитического действия металлов на такие продукты, как перекись водорода, некоторые витамины, животные и растительные жиры, растительные соки, резина, некоторые синтетические волокнистые вещества, фотореагенты, душистые и лекарственные вещества и т. д., с успехом применяются специальные присадки, получившие название деактиваторов (инактиваторов) металлов [94, 95]. [c.251]

Рис. 109. Эффективность дисалицилиденэтилендиамина при подавлении каталитического действия металлов на бензин термического крекинга, стабилизироваиный Рис. 109. Эффективность <a href="/info/470645">дисалицилиденэтилендиамина</a> при подавлении каталитического действия металлов на <a href="/info/395875">бензин термического крекинга</a>, стабилизироваиный
    Как было указано выше, к другой группе антиокислительных присадок относятся дезактиваторы и пас иваторы, механизм действия которых отличается от механизма действия ингибиторов окисления [26]. Дезактиваторы предотвращают или уменьшают каталитическое действие маслорастворнмых соединений металлов за счет образования клешневидных комплексов, в которых атом металла сильно экранирован [27]. Механизм действия пассиваторов связан с образованием на поверхности металла хемосорбированной пленки, предохраняющей масло от каталитического действия металла [25, с. 238]. [c.65]

    На увеличение скорости процессов окисления смазочного масла и на уменьшение антиокислительной активности ингибиторов кроме высокой температуры оказывают каталитическое влияние пбверхности трения металлов и продукты их коррозии. Так, в результате каталитического действия металла на окисление синте- [c.170]

    Шимонаев Г. С. О каталитическом действии металла на окисление топлив и масел // Химия и тех1гология топлив и масел.— [c.227]

    Первые попытки синтезировать метанол были предприняты в начале XX в. после того, как было обнаружено каталитическое действие металлов и их оксидов в отношении образования соединений из более простых веществ, например аммиака из азота и водорода, а также после разработки основ физикохи-мии и создания подходящего оборудования для проведения процессов при высоких давлениях и температурах. В то время при синтезе метанола использовали результаты исследований по синтезу аммиака Ф. Габера, В. Периста и др. [c.209]

    Методы испытания смазочных масел, применяемые в различных странах, как угке отмечалось выше, не учит1,1пают фактических условий, в которых находится масло при эксплуатации двигателя. Если испытания масел в лабораторных условиях нроводят( я при низких температурах, то температура, напрпмер, в верхних поршневых канавках двигателей Отто и Дизеля превышает 250°. Кроме того, необходимо учитывать каталитическое действие металла, который соприкасается с маслом во время работы двигателя. Сталь и стальные сплавы в два раза увеличивают скорость окисления масел при 250° по сравнению с медью и медными сплавами. Между тем при лабораторных испытаниях на окисление обычно применяют медные катализаторы. [c.590]

    Каталитическое действие металлов на окисление масел характеризуется следующими данными (табл. 76) по Тычинину н К. Иванову  [c.153]

    Деактиваторы. Антиокислительные присадки в топливах расходуются при хранении, особенно в присутствии некоторых металлов и сплавов. Чтобы предотвратить каталитическое действие металлов на окисление топлив и уменьилить расход антиокислителей, добавляют специальные присадки — деактиваторы (в тысячных долях процента). Они связывают ионы металла в комплексные соединения, не обладающие каталитической активностью. В отечественной промышленности деактиваторы металла пока не применяют. [c.293]


Смотреть страницы где упоминается термин Каталитическое действие металлов: [c.238]    [c.160]    [c.181]    [c.123]    [c.635]    [c.638]    [c.351]    [c.243]    [c.256]    [c.136]    [c.115]    [c.34]   
Смотреть главы в:

Химия и периодическая таблица -> Каталитическое действие металлов


Химия и периодическая таблица (1982) -- [ c.282 ]




ПОИСК







© 2025 chem21.info Реклама на сайте