Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Минеральных маслах углеводородах

    Важное значение имеет химическая стойкость полипропилена [116]. При комнатной температуре он устойчив в водных растворах солей, мыл и моющих средств, разбавленных и концентрированных минеральных кислотах и щелочах, растворах перекисей, растительных и минеральных маслах, в спиртах. В углеводородах и хлорированных углеводородах полипропилен набухает, в сильно концентрированных окислителях (например, олеум, дымящая азотная кислота, бромистый водород, отбеливатели) — разлагается. Раствор иода и перманганата калия окрашивает полипропилен. [c.301]


    Например, они уменьшают трение. Если между двумя движущимися поверхностями находится пленка такого смазочного масла, оно образует скользкую подушку, по которой легко и плавно движутся соприкасающиеся детали. Особо очищенные углеводороды этой фракции, называемые минеральным маслом, иногда принимают внутрь в виде лекарства оно смазывает стенки кишечника и помогает при запорах. К смазочному маслу можно добавлять различные твердые вещества — тогда получаются густые консистентные смазки. [c.30]

    В качестве инертных наполнителей или разбавителей могут быть аэросил (5]02), вазелиновые и минеральные масла, углеводороды, полиэтилен, диметилфталат. [c.135]

    Биоразложение пролитого масла. В зависимости от химической структуры (ароматические углеводороды, нафтены, парафины), содержания гетероорганических соединений и присадок, молекулярной массы и т д., на минеральные масла по-разному воздействуют кислород и микроорганизмы (бактерии, грибки). В аэробных условиях скорость разложения зависит от содержания минеральных солей и микроэлементов, температуры и величины pH. В случае углеводородов, растворенных в воде, скорость их разложения определяется химической структурой и содержанием кислорода в воде. Олефины и ароматические соединения окисляются до кислородосодержащих соединений (спиртов, кетонов, фенолов, карбоновых кислот) в сравнительно короткий срок. На биологическое разложение углеводородов расходуется кислород с образованием аммиака, сероводорода и соли двухвалентного железа и марганца в сложившихся восстановительных условиях. [c.229]

    ХБП — хлопчатобумажная, пропитанная антифрикционным составом, графитизированная Воздух, инертные газы, нейтральные пары, минеральные масла, углеводороды, нефтяное топливо, промышленная вода 5—10 20,0 100 [c.259]

    Все нефтепродукты увеличивают свою вязкость под давлением. Это свойство углеводородов достаточно широко изучено применительно к минеральным маслам. Для более легких углеводородов, в частности для дизельных топлив, этот показатель качества изучен недостаточно. [c.53]

    Воздух, минеральные масла, углеводороды, нефтяное светлое топливо, промышленная вода, водяной пар. [c.80]

    Воздух, инертные газы, 16(160) минеральные масла, углеводороды, нефтяное темное топливо, промышленная вода, соленая вода, растворы, щелочей [c.81]

    Минеральные масла Углеводороды [c.266]

    Основное влияние на степень набухания резины оказывает химический состав масла парафиновые дистилляты с высоким индексом вязкости обычно вызывают усадку резины, нафтеновые дистилляты — ее набухание. В значительно большей степени набухание резины зависит от содержания в масле ароматических углеводородов — чем ниже анилиновая точка масла, тем сильнее увеличивается в объеме резина, омываемая этим маслом (табл. 7. 39). Масло и резина хорошо совмещаются между собой, если после выдерживания в масле при 140° С в течение 10 суток резина увеличивается в объеме (набухает) не более чем на 6—8%. Меньше других набухают в минеральных маслах уплотнения, изготовленные из силиконового каучука, сохраняющего работоспособность в интервале температур от минус 50 до плюс 150—170° С. [c.441]


    Описан процесс получения сульфонатной присадки путем непрерывного сульфирования дистиллятного масла газообразным серным ангидридом в реакторе типа Ротатор с рециркуляцией кислого масла. Серный ангидрид затем нейтрализуют раствором аммиака, сульфонат аммония экстрагируют изопропиловым спиртом. Обменной реакцией сульфоната аммония с гидроксидом кальция получают сульфонат кальция, из которого в результате карбонатации углекислым газом в растворе ксилола и метилового спирта образуется высокощелочная сульфонатная присадка. Для упрощения процесса перед сульфированием вводят 1—3 % (масс.) низкомолекулярных ароматических углеводородов (толуол, ксилол и др.), что снижает окисляющее действие серного ангидрида, повышает степень сульфирования и позволяет отделить кислый гидрон от вязкого масла без добавления каких-либо растворителей [а. с. СССР 405933]. Чтобы ускорить очистку присадки и повысить ее эффективность перед обработкой углекислым газом в реакционную смесь, состоящую из сульфоната щелочноземельного металла или аммония, минерального масла, гидроксида щелочноземельного металла, воды, углеводородного растворителя и промотора (уксусная кислота), вводят 0,01—0,1 % (масс.) поли-силоксана [а. с. СССР 468951]. [c.79]

    При использовании смазочных материалов на базе минеральных масел необходимо учитывать возможное раздражающее воздействие углеводородных смесей и индивидуальных присадок. Частицы металлов, продукты сгорания в отработанных маслах могут усилить раздражение. Необходимо также учитывать вредное воздействие полициклических ароматических углеводородов, содержащихся в маслах селективной очистки. Предельная концентрация одорантов, содержащихся в минеральных маслах, при их попадании настолько низка (0,001 до 0,1 мг/л), что растворенные в такой воде углеводороды никакой опасности для здоровья человека и животных не представляют [c.230]

    ВНХ-5 (ТУ 6-02-7-128-83) — вязкая жидкость темно-коричневого цвета со слабым специфическим запахом, хорошо растворима в спиртах, углеводородах. Применяют для защиты от атмосферной коррозии черных и цветных металлов. Ингибитор ВНХ-5 используют в количестве 1—3 % (мае. доля) в минеральных маслах, в качестве добавки к водоразбавляемым эмалям, эпоксидно-полиамидным грунтовкам. Обеспечивает защиту металлоизделий сроком от 3 до 10 лет в зависимости от условий хранения. [c.375]

    Пенетрация смазок зависит в основном от количества загустителя (мыла и твердых углеводородов) и вязкости минерального масла, входящего в смазку. Обычно пенетрацию определяют при 25° С. Для смазок, работающих в широком температурном интервале, существенно также знать пологость температурной кривой пенетрации, устанавливаемой путем определения пенетрации при двух или нескольких разных температурах. [c.225]

    Вулканизаты на основе полиизобутилена сохраняют высокую химическую стойкость к действию кислот и щелочей, однако они набухают в углеводородах, четыреххлористом углероде и минеральных маслах. [c.339]

    Фторуглеродные масла имеют очень крутую вязкостно-температурную кривую. По вязкостно-температурной характеристике они уступают даже минеральным маслам (рис. 80) Плотность фторугле-родоБ в 2—3 раза выше плотности соответствующих углеводородов. Фторуглероды имеют более высокие температуры плавления, чем 152 [c.152]

    Для отделения кислот от углеводородов Бауэр (245) предложил анилин, в котором нерастворимы минеральные масла, но Гольде показал, что в анилине не худо растворяются смолистые вещества, хорошо ароматические углеводороды, отчасти и жирные масла. Хотя углеводороды рядов метана и нафтеновые растворимы в анилине очень плохо, аналитическое значение метода преувеличено. [c.322]

    Жиры, представляющие собой при комнатной температуре жидкие вещества, называются жирными маслами. Они отличаются по структуре и свойствам от минеральных масел (углеводородов). [c.204]

    Минеральные масла представляют собой сложную смесь парафиновых, нафтеновых, ароматических и нафтено-ароматических углеводородов, а также кислородных, сернистых и азотистых производных этих углеводородов. При работе двигателя масла подвергаются глубоким химическим превращениям окислению, полимеризации, алкилированию, разложению и т. д. при этом образуются кокс, смолистые, асфальтовые и другие вещества. Образо- [c.13]

    Эксплуатационные свойства масел с присадками ухудшаются при наличии в присадках механических примесей, это же приводит в увеличению отложений на деталях двигателей. Удаление механических примесей в промышленных условиях осуществляется центрифугированием или фильтрованием присадок — без каких-либо специальных добавок или в смеси с растворителями (легкие углеводороды, минеральные масла). В последние годы для получения присадок высокой чистоты фильтрование ведут с применением намывного слоя специальных вспомогательных веществ. При очистке присадок в присутствии растворителей в технологическую схему вводится дополнительный узел отгонки растворителя, что усложняет процесс и приводит к необходимости соблюдения дополнительных мер безопасности. [c.222]


    Как и ранее, авторы не задавались целью дать исчерпывающее изложение всех вопросов, относящихся к минеральным маслам, в книге освещаются лишь основные из них, касающиеся исследования состава и структуры углеводородов масел, химических, физических и физико-химических свойств их, а также приложение этих свойств к практике производства и эксплуатации масел. Авторы будут весьма признательны читателям за замечания по этой монографии. [c.3]

    Кристаллизация парафинов и других твердых углеводородов из раствора в. минеральных маслах осложняется также многими причинами, не связанными ни с вязкостью среды, ни с концентрацией и растворимостью парафинов. В минеральных маслах, как уже указывалось, содержатся, кроме углеводородов, асфальто-смолистые вещества, влияющие, как и всякие посторонние присутствующие в растворах примеси, на процесс кристаллизации. [c.97]

    Парафиновые углеводороды. Из всех классов углеводородов, содержащихся в маслах, парафиновые обладают наиболее пологой кривой зависимости вязкости от температуры. Для тех и-парафи-вовых углеводородов, присутствия которых можно ожидать в минеральных маслах, индекс вязкости составляет 200 и более. [c.118]

    Процессы каталитической перестройки структуры углеводородов и их производных, содержащихся в минеральных маслах, могут иметь большое значение для улучшения их качеств. [c.255]

    Парафиновые углеводороды и церезины в жидком состоянии имеют наиболее низкие значения вязкости. Поэтому удаление тем или иным способом парафинов приводит к повышению вязкости данного минерального масла. [c.47]

    Реакции серы с углеводородами изучены крайне слабо. Тем не менее обработка серой минеральных масел, смол имеет большое практическое значение при получении специальных осерненных масел, служащих в качестве добавок к минеральным маслам, повышающим их смазочные свойства. [c.165]

    Необходимое для крекинга нефтяных фракций тепло также можно получить за счет добавок воздуха и сожжения части углеводородов. В Советском Союзе такой процесс известен как процесс Дубровая. Нагретое до 450 минеральное масло поступает в реакционную камеру, где при атмосферном давл ении смешив-ается с воздухом (около 250 воздуха на 1 т крекируемого масла). За счет горения температура повышается до 520—550°. Выход крекинг-бензина равен 55—65%. вес. [28]. [c.443]

    Изучена растворимость в минеральных маслах сульфонатов, полученных из ароматических углеводородов различных групп. Установлено, что сульфосоли на основе ароматических углеводородов, выделенных из высококипящих масляных фракций, растворяются в маслах лучше, чем сульфосоли, полученные из ароматических углеводородов низкокппящих фракций. Наибольшей растворимостью обладают сульфосоли, полученные из легких ароматических углеводородов, сульфонаты, полученные из тяжелых ароматических углеводородов, в минеральных маслах растворяются плохо, а сульфонаты, полученные из средних ароматических углеводородов, по растворимости занимают среднее положение. По растворимости в маслах бариевые соли превосходят кальциевые соли соответствующих сульфокислот. [c.73]

    Сверхосновные сульфонаты щелочноземельных металлов получают также действием диоксида углерода на смесь сульфоната щелочноземельного металла, растворенного в минеральном масле, и фенолята того же металла в присутствии избытка фенола и растворителя (спирт, простой эфир, хлорированный или нитрованный углеводород), В последние годы особое внимание уделяется получению сверхосновных сульфонатных присадок с щелочностью выше 200 мг КОН/г. Присадки с такой щелочностью получают при использовании алкиленполиаминов и алканоламинов, в качестве промотора [15, с. 79]. [c.81]

    Одной нз важнейших групп пластификаторов являются высо-кокнг ящие сложные эфиры, например дибутил- и диоктилфталаты, трик[ езилфосфат, некоторые эфиры высших спиртов с дикарбоно-выми кислотами или высших карбоновых кислот с двухатомными спиртами. В качестве мягчителей для синтетических каучуков наряду с минеральными маслами применяют синтетические продукты— алкилароматические углеводороды, низшие полиолефины идр, [c.11]

    Схема окислительного дегидрирования н-бутнлена изображена на рис. 144. Пар и воздух смешивают и перегревают в трубчатой печи 7 до 500 °С. Непосредственно перед реактором 2 в эту смесь вводят бутиленовую фракцию. Процесс осуществляют на стационарном катализаторе в адиабатических условиях при 400—500°С и 0,6 МПа. Тепло горячих реакционных газов используют в котле-утилизаторе 5 для получения пара (преимущество работы при повьшкнном давлении — для получения пара можно использовать тепло, выделяющееся при конденсации пара — разбавителя реакционных газов, в отличие от работы при атмосферном давлении при дегидрировании этилбензола и н-бутиленов). Затем газ охлаждают водой в скруббере 4 с холодильником 5 и промывают минеральным маслом в абсорбере 6. Там поглощаются углеводороды С4, а продукты крекинга, азот и остатки кислорода выводят с верха абсорбера и используют в качестве топливного газа в трубчатой печи /. Насыщенное масло из абсорбера б направляют в отпарную колонну 5, где регенерируется поглотительное масло, возвращаемое после охлаждения на абсорбцию. Фракция С4 с верха отпарной колонны 5 содержит 70% бутадиена. Из нее уже известными методами выделяют чистый бутадиен, а непревращенные н-бутилены возвращают на окислительное дегидрирование. [c.489]

    Касторовое масло применяется для изготовления главным образом смазок 1-13 (жировой) и 1-ЛЗ, а также различных бензоупорных и маслостойких смазок. Оно может служить основой для получения натриевых и кальциевых мыл или добавляется в смазки в виде присадки для повышения смазывающих и других эксплуатационных свойств. Получают его из семян клещевины. Оно состоит в основном из глицеридов рицинолевой кислоты хороню растворяется в ароматических углеводородах (бензоле, толуоле) и этиловом спирте, но плохо растворяется в бензине при низких температурах. С повышением температуры его растворимость в бензине повышается. Так, при 0° С в бензине растворяется 3—4% масла, а при 20° С — уже 10—12%. Бензин хорошо растворяется в касторовом масле при 0° С до 35%, а при 20° С — до 47—50% (по Панютину и Раппопорту). В минеральных (нефтяных) маслах, богатых ароматическими углеводородами, растворяется до 25% касторового масла, а в маслах парафинового основания — не более 0,5— 1,0%. С повышением температуры и вязкости минерального масла растворимость касторового масла повышается. В хорошо очищенных авиационных маслах растворяется не более 1% касторового масла. В зависимости от способа обработки техническое касторовое масло выпускается рафинированным и нерафинированным (табл. 12. 12). [c.677]

    Главным недостатком синтетических масел является то, что они по самой своей природе более дорогие, чем минеральные, а возможности их производства офаничены. Это офаничивает их использование областью специальных масел и смазок, которые достаточно дороги. Жидкости эфирного типа имеют еще один недостаток — они вызывают большее набухание уплотнительных материалов, чем углеводороды, поэтому их следует с осторожностью использовать в тех областях применения, где они могут контактировать с эластомерами, предназначенными для работы с минеральными маслами. [c.31]

    Щелочные отходы от выщелачивания керосиновых и масляных дистил-. гятов большинства нефтей представляют собой коллоидный водный раствор натриевых солей нафтеновых кислот (а иногда и некоторого количества кислых сульфосоединений), в котором также коллоидально растворено минеральное масло. В щелочных отходах присутствуют также натриевые соли кислых сернистых соединений, а иногда серной и сернистой кислот. В щелочных отходах от очистки бензиновых фракций соли нафтеновых кислот не содержатся, так же как и углеводороды. Таклсе очень мало солей нафтеновых кислот в отходах от выщелачивания дистиллятов урало-волжских нефтей. Очень часто в щелочных отходах встречаются феноляты натрия. [c.795]

    В последнее время в качестве основ и компонентов различных смазочных материалов все большее применение находят синтетические углеводороды. Это объясняется их лучшими зксплуахационными свойствами по сравнению с минеральными маслами, в частности по термоокислительной стабильности, похаробезопасности и другим свойствам. Так, температура вспышки широко известного минерального масла АМГ-10 составляет 93 С, а синтетических изопарафино-вых углеводородов - 190°С, что придает последним большую похаро-безопасность. Однако изопарафиновые углеводороды по сравнению с маслом АиГ-10 характеризуются низкой смазочной способностью. [c.18]

    Флотация минеральных ископаемых. Весьма интересное и перспективное направление применения СНГ разработано несколько лет тому назад в лабораториях компании Эссо в Великобритании. Давно известно, что руды металлов и сопутствующие им минералы, так же как уголь и связанные с ним компоненты золы и пустой породы, могут разделяться методом флотации. Для этой цели применяют разнообразные жидкости (воду, минеральные масла, растворители), обладающие различным поверхностным натяжением в отношении компонентов шахтного угля и руд металлов. Следовательно, эмульсии двух жидкостей будут иметь неодинаковую степень смачиваемости, т. е. селективную смачиваемость. Однако, несмотря на это, методом флотации не очень легко разделить компоненты, особенно в тех случаях, когда они имеют почти одинаковую плотность. Этим объясняется тот факт, что в прошлом флотационная сепарация практически всецело базировалась на различии поверхностного натяжения. Эффективность сепарации может быть значительно повышена при одновременном использовании как поверхностного натяжения, так и гравитации, т. е. при флотации с применением легких углеводородов. Эффект добавки СНГ или легкого дистиллята после смачивания водоугольной пульпы нефтяным топливом проявляется в растворении легкого углеводорода в абсорбированной нефти и всплывании на поверхность ванны покрытых нефтью кусков угля. Золообразующие компоненты и сера, находящиеся главным образом в виде сульфида железа, например пирита, опускаются на дно ванны. В табл. 68 приведены данные по составу угля до и после обогащения методом флотации легкими углеводородами. Хорошо разработанные схема и оборудование для удаления золы позволяют почти полностью утилизировать легкие углеводороды и снова использовать их в процессе флотационного обогащения. [c.361]

    Исследуя процесс получения вольтолей из минеральных масел, Г. М. Панченков и К. В. Пузицкий нашли, что под влиянием высокочастотного разряда, от 1000 до 100 ООО кгц, вязкость масла возрастает в степени, зависящей от частоты применяемого тока. Возрастание вязкости масел нри равных условиях тем больше, чем больше частота и время воздействия электрического поля и чем выше молекулярные веса углеводородов, входящих в состав минерального масла. Возрастанию вязкости способствует ведение процесса в вакууме. Необходимо охлан дение масла в процессе [c.136]

    Из сернистых соединений в качестве антикоррозийных присадок практическое применение получили в основном сульфиды и дисульфиды алкил-фенолов, а также мно- 5 0,1 гочисленные продукты, представляющие собой осерненные эфиры олеиновой, рицинолевой и других кислот, осерненные терпены и непредельные углеводороды, осерненные минеральные масла случаев сера входит во серы. [c.335]


Смотреть страницы где упоминается термин Минеральных маслах углеводородах: [c.989]    [c.115]    [c.115]    [c.337]    [c.338]    [c.14]    [c.311]    [c.4]    [c.154]    [c.160]   
Аналитическая химия серы (1975) -- [ c.152 , c.156 ]




ПОИСК





Смотрите так же термины и статьи:

Масла минеральные



© 2025 chem21.info Реклама на сайте