Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Углерод образование из каменноугольного газа

    Сероокисъ углерода и сероуглерод. Эти соединения, по-видимому, никогда не присутствуют в жпдкпх нефтяных фракциях. Поэтому их реакции не включены в схему реакций сернистых соединений важнейших типов. Однако удаление сероуглерода и сероокиси углерода из некоторых газов, в частности каменноугольных, является важной областью примепения гидрогенизационного обессеривания. Сероокись углерода и сероуглерод удается полностью удалить при высоких температурах и давлениях в присутствии водорода и катализатора. Конечным продуктом гидрирования сероуглерода является метан [42]. Б литературе сообщается [43, 44] об образовании метантиола в качестве промежуточного продукта. [c.371]


    Между углеродистыми водородами известен лишь один, заключающий в частице 1 атом углерода и 4 атома водорода следовательно, это есть соединение с наивысшим процентным содержанием водорода (СН содержит 25°/о водорода). Этот предельный углеродистый водород СН называется болотным газом или метаном. Если приток воздуха к остаткам растений и животных ограничен, или даже не существует, то их разложение сопровождается образованием болотного газа, будет ли это разложение происходить при обыкновенной тем-температуре, или при температуре сравнительно весьма высокой. Оттого растения, разлагающиеся в болотах,под водою, выделяют этот газ. Всякий анает, что если тину болотного дна потрогать чем-нибудь, то из нее выделяется большое количество пузырей газа эти пузыри, хотя медленно, однако, выделяются и сами собою. Выделяющийся газ содержит преимущественно болотный газ, и его легко собрать, если стклянку опрокинуть в воде и в горло ее вставить (под водою же) воронку тогда пузыри газа легко уловить в отверстие воронки. Если дерево, каменный уголь и множество других растительных и животных веществ разлагаются действием жара без доступа воздуха, т.-е. подвергаются сухой перегонке, то они также выделяют вместе с другими газообразными продуктами разложения (углекислотою, водородом и различными другими веществами) много метана. Обыкновенно газ, употребляющийся для освещения — светильный газ, — получается именно этим способом, и потому он всегда содержит в себе болотный газ, смешанный с водородом и другими парами и газами, хотя он и очищается от некоторых из них [236]. А так как разложение органических остатков, образующих каменные угли, еще продолжается под землею, то в каменноугольных копях нередко продолжается еще выделение массы болотного газа, содержащего азот и СО . Смешиваясь с воздухом, он дает взрывчатую смесь, составляющую одно из бедствий копей этого рода, так как подземные работы приходится вести с лампами. Но эта опасность значительно уменьшается предохранительною лампою Гумфри Деви., который заметил, что если в пламя ввести плотную металлическую сетку, то поглощается столь много тепла, что за сеткой горение не продолжается (проходящие [c.259]

    Было исследовано образование ацетплена в высокочастотных разрядах пз смесей СН и Н2 [62], каменноугольного газа [63] и из метана и этана [64] (см. стр. 344). В другом исследовании [65] реакции метана при 6 лг.и рт. ст. и 0° С в трубке нз боросиликатного стекла (62 X 5,8 см) были использованы внешние электроды, выполненные в виде коаксиальных катушек длиной 7 см и внутренним диаметром 7,2 см с алюминиевой проволокой диаметром 5 мм. Разряд имел следующие параметры 4,3 кв, 0,1 а, 600 кгц. Выход ацетилена сильно зависел от скорости подачи газа и расстояния между электродами и проходил через резкий максимум, величина которого равнялась 25% от теоретического выхода для реакции 2СН4 С2Н2 - - ЗН2. Углерод не образовывался, однако возникали жидкие продукты, содержащие циклоиентадиен, инден и желтое твердое вещество в виде хрупких пластинок. Этот твердый продукт соответствовал формуле С Н (ге > 1). Он был устойчив к действию температуры (до 350° С) и химических реагентов, не растворим более чем в шестидесяти органиче- [c.372]


    Топливо обеспечивает создание в печи высоких температур, ирп6упдстмт.ту д тгя прптекяттия реакций восстановления оксидов железа, образование оксида углерода (П) и водорода, йв-ляющихся газообразными восстановителями, диффузию углерода в восстановленное железо и образование чугуна. В качестве топлива используется преимущественно каменноугольный кокс и, для снижения его расхода, добавки газообразного (природный и коксовый газы), жидкого (мазут) и аэрозольного (угольная пыль) топлив. Доменный кокс должен обладать высокой прочностью, сопротивлением к истиранию, не спекаться в условиях доменного процесса и содержать минимальные количества золы, серы и фосфора. Так, например, повышение содержания серы в коксе на 1 % увеличивает расход кокса на 10% и снижает производительность печи на 20%. Обычно, в металлургическом коксе содержится золы 8—12%, серы 0,5—2,0% и фосфора до 0,5%. [c.54]

    В наилучших условиях, требующихся для производства светильного газа высокой теплотворной способности, нз самых лучших образцов каменного угля получается мягкий кокс невысокого качества. В условиях же, соответствующих образованию кокса, достаточно твердого для использования его при восстановлении окиси железа, светильный газ получается более низкого качества. В экономическом отношении высококачественный кокс выгоднее всего производить в коксовых печах с улавливанием побочных продуктов устройство печей позволяет получать каменноугольную смолу, аммиак и светильный газ, причем часть газа испол1ззуют как топливо для тех же печей, а остаток газа смешивают с природным или водяным газом и направляют в городской газопровод. Очищенный светильный газ, получающийся приблизительно, в количестве 0,317 на т каменного угля, состоит главным образом из водорода (52 объемн. %) и метана (32%) с небольшой примесью окиси углерода (4—9%), двуокиси углерода (2%), азота (4—5%), а также этилена и других олефинов (3—4%). Средняя теплотворная способность светильного газа 143,6 ккал/м . В процессе очистки гаэ пропускают через скрубберы для улавливания смолы и аммиака и через поглотители для выделения легкого масла, которое получается в количестве, достигающем 14,5 л на 1 г каменного угля, и содержит 60% бензола, 15% толуола, ксилолы и нафталин. При перегонке каменноугольной смолы получают дополнительно еще небольшое количество сравнительно легкого масла, но в современных условиях ОольШ  [c.152]

    Безусловно, что в кратком обзоре невозможно охарактеризо- вать все классы неорганических материалов, однако нельзя не сказать о графитовых материалах, которые выделяются исключительно высокой теплопроводностью, превышающей теплопроводность многих металлов и сплавов. Это качество наряду с химической инертностью и термической стойкостью при резких перепадах температур, высокой электрической проводимостью и хорошими механическими свойствами сделали графит и материалы на его основе незаменимыми в различных областях техники и промышленности. В частности, в химической промышленности применение графита особенно эффективно для изготовления теплообменной аппаратуры, эксплуатируемой в агрессивных средах. На ее поверхности в значительно меньшей степени откладываются накипь и загрязнения, чем на поверхности всех других металлических и неметаллических материалов. Сырьем для получения искусственного графита служит нефтяной кокс, к которому добавляют каменноугольный пек, играющий роль вяжущего материала при формовании изделий из графитовой шихты. Сам цикл получения изделий включает измельчение и прокаливание сырья, смешение шихты, прессование, обжиг и графитизацию. Условия обжига тщательно подбирают, чтобы избежать появления механических напряжений и микротрещин. При графитизации обожженных изделий, проводимой при температуре 2800—3000 °С, происходит образование упорядоченной кристаллической структуры из первоначально аморфизованной массы. Чтобы изделиям из графита придать непроницаемость по отношению к газам, их пропитывают полимерами, чаще всего фенолформальдегидными, или кремнийор-ганическими смолами, или полимерами дивинилацетилена. Пропитанный графит химически стоек даже при повышенных температурах. На основе графита и фенолформальдегидных смол в настоящее время получают новые материалы, свойства которых существенно зависят от способа приготовления. Материалы, формируемые при повышенных давлениях и температурах, известны под названием графитопластов, а материалы, получаемые холодным литьем, названы графитолитами. Графитолит, например, применяют не только как конструкционный, но и как футеровочный материал. Он отверждается при температуре 10 °С в течение 10—15 мин, имеет высокую адгезию ко многим материалам, хорошо проводит теплоту и может эксплуатироваться вплоть до 140—150°С. В последнее время разработан метод закрытия пор графита путем отложения в них чистого углерода. Для этого графит обрабатывают углеводородными соединениями при высокой температуре. Образующийся твердый углерод уплотняет графит, а летучие продукты удаляются. Такой графит назван пироуглеродом. [c.153]


    Л етаи является основной составной частью природного газа. Кроме того, он заключен в каменноугольных пластах — при их разработке образуются взрывоопасные смеси метана с воздухом, так называемый рудничный газ . Наконец, метан наряду г. диоксидом углерода содержится в болотном газе, который образуется на дне озер и на болотах в результате анаэробного брожения (метановое брожение) целлюлозы. Аналогичные процессы образования метана протекают при переваривании нини в рубцах пли разложении фекалий (биогаз). [c.203]

    До температуры 476—523 К испаряется влага и выделяются газы — оксид углерода (И) и оксид углерода (IV) при температуре около 573 К начинается выделение паров смолы и образуется пиро-генетическая вода, а уголь переходит в пластическое состояние при температуре 773—823 К разлагается пластическая масса угля с образованием первичных продуктов газа и смолы, состоящих из парафиновых, нафтеновых и ароматических углеводородов, и затвердевает масса с образованием полукокса. При температуре 963 К и выше происходит дальнейшее выделение летучих продуктов, которые подвергаются пиролизу, а из них в результате различных реакций образуются ароматические углеводороды (последние наиболее стойки в условиях коксования и накапливаются в смоле) одновременно происходит упрочнение кокса. Конечными продуктами будут как индивидуальные вещества (сероуглерод, бензол, толуол, ксилолы, аммиак, антрацен, нафталин, фенантрен, карба-еол, фенол и др.), так и смеси веществ (масла — нафталиновое, поглотительное и др. сольвент — смесь изомеров триметилбензола и ароматических углеводородов каменноугольный пек, обратный коксовый газ и др.). [c.84]

    Большое количество газов (в основном лютана) содержится в различных углях в сорбированном состоянии, но иногда и в виде скоплений свободного газа. Происхождение этих газов связано с преобразованием исходного растительного материала и дальнейшим метаморфизмом образующихся углей. Все стадии образования углей, а именно образование торфа из растительных остатков и последовательное превращение его в бурый уголь, каменный уголь и антрацит, сопровождаются образованием газов. По Успенскому (1956), при изменении органического вещества от буроугольной стадии к каменноугольной 14,2% органического углерода переходит в газообразные продукты. [c.99]


Смотреть страницы где упоминается термин Углерод образование из каменноугольного газа: [c.321]    [c.177]    [c.557]    [c.326]    [c.328]    [c.38]    [c.547]   
Химия углеводородов нефти и их производных том 1,2 (0) -- [ c.231 ]




ПОИСК





Смотрите так же термины и статьи:

Образование газа



© 2025 chem21.info Реклама на сайте