Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Реакции олефинов с другими органическими соединениями

    При прямом гомогенном окислении этилена кислородом - образуется ряд ценных продуктов окись этилена, формальдегид, органические кислоты. Долгое время внимание исследователей было сосредоточено на процессе окисления этилена до формальдегида. Действительно, получение формальдегида при окислении этилена кислородом при 400 или 600 °С одновременно с окисью этилена и другими кислородсодержащими соединениями в относительно простой аппаратуре, без применения дорогого катализатора представляет большой интерес. Не менее заманчивым является путь синтеза окиси этилена гомогенным окислением этилена в газовой фазе, так как для этого процесса не требуется затрат ни дорогого катализатора, ни хлора. Кроме того, прн этом способе получения окиси этилена не требуются этилен и воздух такой высокой степени очистки, как при каталитическом окислении этилена. К недостаткам этого метода относятся многообразие образующихся продуктов и низкая селективность, что объясняется цепной природой происходящих превращений и высокой температурой. Однако развитие теории цепных процессов открывает новые пути совершенствования реакций газофазного окисления этилена, поэтому можно надеяться, что этот процесс, находящийся пока в стадии лабораторно-модельных исследований, будет использован в промышленности для синтеза окисей олефинов. [c.187]


    Изменения эффективности каталитических процессов, осуществляемых при искусственно создаваемом нестационарном состоянии катализатора, можно, по-видимому, ожидать всегда, если эти процессы протекают по раздельному механизму. В частности, по такому пути протекают такие окислительно-восстановительные реакции, как полное окисление водорода, СО, углеводородов и многих других органических веществ при повышенных температурах, а также парциальное окисление олефинов, спиртов, ароматических соединений. Осуществляя каким-либо образом взаимодействие окислителя с восстановленным катализатором й затем — взаимодействие исходного вещества (в присутствии окислителя или без него) с вводимым в зону реакции окисленным катализатором, можно часто увеличить активность и (или) избирательность за счет того, что в нестационарном режиме катализатор может поддерживаться в состоянии, оптимальном по энергии связи кислорода с поверхностью. Примером этого, кроме уже названных процессов, может служить окисление нафталина во фталевый ангидрид на ванадиевом катализаторе [30]. Для этого процесса активность катализатора становится тем большей, чем больше степень окисленности 0, а избирательность процесса практически не зависит от величины 0 нри [c.40]

    АМИНОСПИРТЫ — органические соединения, содержащие окси- и аминогруппу, А. можно получить присоединением аммиака или аминов к оксидам олефинов. При реакции оксида этилена с аммиаком образуются моно-, ди- и триэта-ноламины. Наибольшее практическое значение из А. имеют этаноламины. Большинство алкалоидов, например, эфедрин, кокаин и другие, являются производными А. К А. относится один из важнейших гормонов — адреналин. Этаноламины используют в промышленности для очистки газов от сернистых соединений и диоксида углерода. [c.22]

    К реакциям, протекающим по окислительно-восстановительному механизму, относятся такие, как гидрирование олефинов, ароматических соединений и других соединений с кратными связями, СО и СО2 до метана, дегидрирование органических соединений, синтез аммиака, синтез углеводородов и спиртов из СО и водорода, окисление углеводородов, а также сернистого ангидрида и аммиака и т. д. Все эти процессы являются гомолитическими [4], при которых промежуточное взаимодействие с катализатором включает гомолитический разрыв двухэлектронных связей в реагирующих веществах и образование связей с катализатором с использованием неспаренных электронов последнего. [c.26]


    РЕАКЦИИ ОЛЕФИНОВ С ДРУГИМИ ОРГАНИЧЕСКИМИ СОЕДИНЕНИЯМИ [c.173]

    Так как эффективность процесса определяется прежде всего состоянием катализатора, то можно легко представить ситуацию при которой это состояние в нестационарном режиме обеспечивает большую активность и, что особенно важно, селективность катализатора. Очевидно, в искусственно создаваемом нестационарном режиме можно добиться состава катализатора, в принципе невозможного при неизменных условиях в газовой фазе. Это хорошо видно на примере раздельного механизма окислительновосстановительных реакпий, когда при повышенных температурах протекают полное окисление водорода, окиси углерода, углеводородов и многих других органических веш,еств, а также парциальное окисление олефинов, спиртов, ароматических соединений. Осуществляя раздельно взаимодействие кислорода с восстановленным катализатором, выведенным каким-либо образом из-зоны реакции, и затем взаимодействие реагирующего компонента с вводимым в зону реакции окисленным катализатором, можно значительно увеличить активность и избирательность процесса за счет того, что в таком нестационарном режиме катализатор может поддерживаться в состоянии, оптимальном по энергии связи кислорода с поверхностью. [c.17]

    В патентах [131, 132] указывается, что треххлористый титан при использовании его в качестве единственного компонента циглеровского катализатора не полимеризует этилен и другие олефины с образованием твердых полимеров, в то время как двухлористый титан проявляет себя как активный катализатор. Двухвалентный титан способен взаимодействовать с этиленом и образовывать комплекс, который, по-видимому, инициирует полимеризацию. Двухвалентный титан или его комплекс может вступать в реакцию комплексообразования с другими органическими соединениями. Это дает возможность контролировать молекулярный вес полимера. Так, например, если три-н-бутиламин образует комплекс с компонентами циглеровского катализатора, то молекулярный вес полимера оказывается ниже, чем в отсутствие амина [131]. [c.129]

    Каталитическая активность сложных оксидных систем как и индивидуальных оксидов хорошо коррелирует с прочностью связи кислорода в решетке твердых тел. С увеличением прочности этой связи активность сложных оксидных катализаторов в реакциях глубокого окисления органических соединений, как правило, убывает. Зависимость между скоростью глубокого окисления органических веществ на различных катализаторах и прочностью связи кислорода с их поверхностью часто рассматривается как доказательство протекания указанных реакций по стадийной схеме, включающей отрыв поверхностного кислорода в качестве обязательной (даже лимитирующей) стадии процесса. В то же время известны и другие, неокислительные реакции, для которых также наблюдается довольно хорошая корреляция между скоростью катализа и прочностью связи кислорода. Например, на молибдатах различных элементов существует зависимость между скоростями изомеризации бутена-1 в бутен-2, глубокого окисления олефинов и восстановления поверхности водородом и пропиленом (рис. 20). Скорости всех указанных реакций зависят от энергии связи кислорода с катионом. [c.100]

    В связи с тем, что многие продукты реакции озона с олефинами (озониды и перекиси) могут быть превращены в спирты, кислоты и другие продукты, дана глава, посвященная свойствам и реакциям озонидов. Совместное рассмотрение кинетики и механизма реакции озона с органическими соединениями (производные углерода) и с производными непереходных элементов IV группы периодической таблицы — Si, Ge, Sn, Pb (аналоги углерода) — позволяет лучше выявить специфику углерода по отношению к остальным членам подгруппы. [c.7]

    К группе гетерогенных каталитических реакций окисления-восстановления относится большое число важных промышленных процессов гидрирование олефинов, ароматических и других соединений с кратными связями, гидрирование СО и СОг До метана, синтез аммиака, синтез углеводородов и спиртов из СО и водорода, гидрогенолиз серусодержащих соединений, получение водорода конверсией метана и СО с водяным паром, окисление 80г в производстве серной кислоты, окисление аммиака в производстве азотной кислоты, полное окисление углеводородов и других органических соединений, парциальное окисление углеводородов и спиртов с целью получения окиси этилена, формальдегида, фталевого ангидрида, акролеина, нитрила акриловой кислоты и других кислородсодержащих продуктов, дегидрирование углеводородов для получения олефинов и диолефинов и многие другие. [c.232]

    Бензол и ряд его гомологов, а затем и большая группа других соединений вскоре после их открытия были выделены в группу ароматических соединений, так как обладали особыми, ароматическими свойствами. Вопрос о причинах этих свойств почти со времени создания Бутлеровым теории химического строения — один из важнейших в теоретической органической химии. Главное затруднение было в том, что формула бензола указывает на высокую ненасыщенность, которая не обнаруживается в реакционной способности этого соединения. Бензол не обесцвечивает бромную воду, не окисляется раствором перманганата, не присоединяет серную кислоту. Лишь в особых и достаточно жестких условиях можно провести реакцию между бензолом и бромом, серной или азотной кислотой, причем в результате этих реакций происходит замещение атомов водорода, а не присоединение, характерное для олефинов. Другая особенность, отличающая ароматические соединения от олефинов,— их высокая устойчивость, способность образоваться даже в жестких пиролитических процессах и сравнительная трудность протекания реакций окисления. Наконец, весьма характерными являются свойства некоторых производных ароматических соединений. Так, ароматические амины менее основны, чем алифатические. При реакции с азотистой кислотой [c.12]


    Органические соединения серы не только разбавляют катализатор— присутствие продуктов их превращений в серной кислоте ускоряет полимеризацию олефинов и другие побочные реакции. Поэтому очевидно, что персоналу на установках алкилирования следует часто проверять работу обессеривающего оборудования и принимать все необходимые меры для достижения высокой степени обессеривания олефинового сырья. [c.217]

    До сих пор мы рассматривали лишь те реакции, результатом которых является образование новой связи С—С, и почти ничего не говорили о возможности переходов от одного типа органических соединений к другому, скажем, от олефинов к спиртам или от сложных эфиров к галогенопроизводным, т. е. не касались вопроса о трансформациях функциональных групп. Между тем стадии, включающие такого рода превращения, можно найти практически [c.130]

    В присутствии цеолитов алкилированию подвергаются и другие органические соединения, способные к взаимодействию с кислотными центрами. К числу таких соединений относится фенол. Алкилирование фенола на обычном кислотном катализаторе осложняется образованием побочных продуктов —эфиров и комплексов катализатор—гидроксильные группы фенола. Однако при алкилировании фенола олефинами на редкоземельной форме цеолита X при 180— 210° С эти побочные процессы не наблюдаются [61]. Как и в случае других производных бензола, алкилирование фенола приводит в основном к замещению в пара- и о/7ото-положения, что соответствует правилу селективности Брауна. Образование л/та-изомеров происходит либо после продолжительного контакта продуктов алкилирования с катализатором, либо при повышении температуры реакции. Установлено, что появление л/ешя-изомеров в продуктах алкилирования фенола изобутиленом связано с изомеризацией орто-и аря-изомеров путем трансалкилирования [54]. [c.393]

    Катализаторами реакций неполного окисления ациклических органических соединений (главным образом олефинов и их производных) в кислоты или ангидриды кислот служат обычно сложные контакты на основе окислов молибдена или ванадия. Каталитическое окисление тех же веществ на других окисных катализаторах протекает по иным направлениям (образование ненасыщенных карбонильных соединений, продуктов окислительного дегидрирования, полное окисление). [c.200]

    Для глубокого окисления органических соединений применимы все благородные металлы, но окись этилена из этилена и кислорода может быть получена только на серебряном катализаторе. С другой стороны, металлический никель катализирует реакции гидрирования, но не окисления, тогда как пятиокись ванадия хороший катализатор реакций окисления, но не реакций гидрирования. Эти катализаторы обладают групповой специфичностью. Примером универсальных катализаторов могут служить платина, катализирующая разнообразные реакции, в том числе гидрирования и окисления, и ионы водорода, катализирующие реакции гидролиза, изомеризации, алкилирования, гидратации олефинов и т. д. [c.162]

    На основе реакций сопряженного окисления могут быть созданы новые технологические процессы, в которых в качестве окисляющих агентов будет использован не молекулярный кислород, а перекисные радикалы — высокоактивные промежуточные соединения, возникающие входе процесса окисления. При этом одна химическая реакция, протекающая в системе, будет служить генератором перекисных радикалов, а другой химический процесс будет потреблять их. Этот принцип был положен в основу нового метода получения окисей олефинов путем сопряженного (совместного) окисления непредельных углеводородов и органических соединений, окисляющихся легче, чем взятый олефин [29]. [c.392]

    В данном разделе речь пойдет о процессах галогенирования, под которыми подразумеваются все реакции введения в органические соединения атомов галогенов. Чаще всего это хлор из-за доступности и дешевизны, который получают электролизом раствора хлорида натрия. Хлорирование углеводородов и других органических соединений является очень важньш направлением органического синтеза, поскольку этим методом производят самые различные продукты, находящие широкое применение в народном хозяйстве. Это полупродукты для органического синтеза (хлористый метил, этил, аллил, хлорбензол, хлоргидрины, из которых получают XJюpoлeфины, спирты, окиси олефинов и т.д.) мономеры для получения смол, пластмасс, волокон (винилхлорид, хлоропрен, 1,2-дихлорэтан, монохлортрифторэтилен, тетрафторэтилен и т.д.) различные пестициды, хладоагенты, растворители, медицинские препараты и т.д. [c.75]

    Единого мнения о надежности иодометрических методов нет. Установлено, что многие органические пероксикислоты, диацил-пероксиды, гидропероксиды и другие пероксидные соединения можно определять количественно иодометрически, хотя высказывались сомнения относительно точности некоторых иодометрических анализов таких простых пероксидов, как пероксиды цикло-гексена и тетралина. Многие исследователи считают, что иод, вы-деляющп.йся при реакции, может присоединяться к двойной связи в олефинах. Такое предположение основано на зависимости результатов анализа от размера пробы для некоторых образцов, а также на данных исследования с участием свободного иода и трииодид-иона. Уилер [1] обнаружил, что в присутствии иодид-иона иод не присоединяется к некоторым ненасыщенным, не содержащим пероксида маслам, но нет доказательства, что три-иодид-ион не реагирует с олефинами в присутствии пероксидов. Панютин и Гиндин [9] предложили метод, в котором они определяли прибавляемый иодид-ион, выделившийся иод и неокис-лившийся иодид, однако рекомендуемая ими методика столь отлична от общепринятой, что полученная информация не доказы- [c.256]

    Химия углеводородов за последние десятилетия претерпела значительную эволюцию. Два основных результата этой эволюции должны быть отмечены в первую очередь установление прямых путей перехода от углеводородов разных классов к соединениям иного химического характера и отыскание новых реакций, непосредственно связываюпщх различные группы углеводородов друг с другом. Превращения первого рода касаются главным образом непредельных и лишь отчасти предельных углеводородов к ним следует отнести такие реакции, как гидратация олефинов с образованием спиртов, получение ацет-альдегида и уксусной кислоты из ацетилена, получение хлористого аллила и глицерина из пропилена, окиси этилена из этилена, нитропарафинов прямым нитрованием парафиновых углеводородов, синтез многочисленных галоидопроизводных, простых и сложных эфиров, альдегидов, кетонов, аминов и других органических соединений на основе непредельных углеводородов. Многие из этих реакций получили в настоящее время промышленное оформление и составляют новую отрасль химической промышленности — промышленность соединений алифатического ряда. [c.3]

    Из альдегидов в качестве реактивов используют анисовый альдегид [282], бензальдегид [274, 283, 284], ванилин [277, 282, 284], 4-диметиламинобензальдегид [278, 279, 283—285], 4-оксибензальдегид [270], салициловый альдегид [270, 271, 277, 278, 282, 283], фурфурол [271, 272, 279, 283, 286, 287]. Специфичность этих реакций невелика [288]. Кроме высших спиртов окраску вызывают и многие другие органические соединения. О механизме протекающих процессов имеется несколько предположений. Возможно, что концентрированная H2SO4 действует на спирты как дегидратирующий агент с образованием олефинов, например  [c.192]

    В реакцию окислительного цианирвЬания вступают также к- и изобутилен, непредельные нитрилы, галогензамещенные олефины, бензол и другие органические соединения. Некоторые сведения об условиях этой реа ции и примерах ее использования для синтеза нитрилов суммированы в табл. 14. [c.103]

    Для сопоставления с приводимыми в качестве примера каталитическими реакциями перечислим некоторые важные органические соединения, которые получаются без применения катализаторов уксусная и другие кислоты, синтезируемые окислением углеводородов ацетилен, этилен и другие олефины, получаемые термическим крекингом хлоропарафины, этаноламины, нитропарафины окись этилена и пропилена, синтезируемые хлоргидри-новым методом фенол, получаемый сульфированием и из монохлорбензола мочевина.  [c.324]

    Этилен СНа = СН2, пропилеи СНз—СН = СНг, бутилен СНз—СНг—СН = СНг, бутадиен (дивинил) СНг = СН—СН = СН2, будучи очень реакционноспособными соединениями, играют важную роль в промышленности органического синтеза. Из многочисленных реакций, в которые вступают олефины, наибольшее практическое значение имеют процессы полимеризации (полиэтилен, полипропилен, полиизобутилен и др.), гидратации (спирты), хлорирования (дихлорэтан, хлористый аллил и т. п.), окисления (окись этилена), оксосинтеза и некоторые другие реакции. Широкое распространение получили процессы гидратации олефиновых углеводородов. Таким способом получаются этиловый, изопропиловый и другие спирты. Этиловый спирт по объему производства занимает первое место среди всех других органических продуктов. С каждым годом спирт, получаемый из пишевого сырья, все более и более заменяется синтетическим, гидролизным и сульфитным (см. с. 205) синтетический спирт из этилена в несколько раз дешевле пишевого и требует меньших затрат труда. Синтетический спирт широко применяется в различных отраслях промышленности для получения синтетического каучука, целлулоида, ацеталь-дегида, уксусной кислоты, искусственного шелка, лекарственных соединений, душистых веществ, бездымного пороха, бутадиена, инсектицидов, в качестве растворителя и т. п. [c.169]

    Бимолекулярные реакции присоединения и замещения радикалов являются реакциями развития, торможения и обрыва цепей Б процессах крекинга, полимеризации и во многих других сложных превращениях органических веществ. Особенно важны реакции присоединения простых радикалов (Н, СНз и др.) к непредельным молекулам (олефинам, диенам и другим классам соединений с кратной связью) и реакции замещения этих радикалов, протекающие с предельными п непредельными молекулами, которыми определяется судь ба цепей при крекинге и других процессах  [c.188]

    Химикам все же удалось обнаружить реакцию, в которой бакибол ведет себя аналогично другим ненасыщенным органическим соединениям. Оказалось, что он, подобно олефинам, способен образовывать я-комплексы с переходными металлами и даже вытеснять этилен из нольвалентного комплекса [c.138]

    Диалкилы и диарилы R2Hg — неполярные, летучие или низкоплавкие твердые вещества. Все оии термически довольно неустойчивы, чувствительны к воздействию сво га, не могут сохраняться в течение месяца без разложения. Их можно использовать для получения других металлоорганических соединений при прямом обмене, папример по реакции п/2 R2Hg + М = R M + п/2 Hg. До конца эта реакция протекает со щелочными, щелочноземельными металлами, с Zll, А1, Са, 8п, РЬ, 8Ь, В1, 8е, Ге, но для 1п, Т1 и С(] она обратима. Соединение R2Hg проявляет слабую реакционную способность по отношению к кислороду, воде, активному водороду и к органическим функциональным группам вообще. Известен также ряд соединений, образующихся при взаимодействии солей ртути с олефинами, ртутьорганических соединений, содержащих гетероатомы [198, 336, 635, 6871. [c.31]

    Особое место среди сложных реакций занимают цепные реакции, протекающие с )гч стием активных промежзггочных частиц (атомов, радикалов, ионов, ион-радикалов, возбужденных молекул и комплексов) в цикАически повторяющихся стадиях - циклических марпфутах, например в реакциях окисления органических соединений молекулярным кислородом, крекинге (пиролизе) углеводородов, алкилировании изопарафинов олефинами, диспропорционировании (метатезисе) олефинов и других процессах. [c.27]

    Развитие сырьевой базы ПАВ и других продуктов, получаемых на основе высших олефинов, базируется только на высших а-олефинах, синтезируемых каталитической олигомеризацией этилена. Причем на смену каталитическим высокотемпературным процессам олигомеризации этилена, в основу которых положена реакция Циглера, протекающая прн температуре 100— 240 С и давлении 20 МПа, приходят низкотемпературные процессы олигомеризации этилена на металлорганических системах, включающих комплекс переходного металла и алюминий-органическое соединение [80]. Сопоставительная оценка активности и селективности различных катализаторов олигомеризации этилена (табл. 2.2) указывает на то, что наиболее эффективными каталитическими системами являются карбоксилат циркония— сесквиэтилалюминийхлорид (СЭАХ) [A. . 1042701 СССР, 1983] и никель-боргидридиая система, предложенная фирмой Shell , [c.86]


Смотреть страницы где упоминается термин Реакции олефинов с другими органическими соединениями: [c.219]    [c.192]    [c.5]    [c.101]    [c.102]    [c.121]    [c.89]    [c.93]    [c.480]    [c.107]    [c.107]    [c.275]    [c.84]    [c.176]    [c.196]    [c.566]   
Смотреть главы в:

Алкилирование. Исследование и промышленное оформление процесса -> Реакции олефинов с другими органическими соединениями




ПОИСК





Смотрите так же термины и статьи:

Другие органические соединения

Олефины соединение к ним

Органические реакции

Реакции органических соединений



© 2025 chem21.info Реклама на сайте