Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Валин желатине

    И неполноценные, в которых отсутствует одна или несколько незаменимых аминокислот. С этой точки зрения казеин — основной белок молока— является полноценным белком, тогда как желатина — белок, получаемый из костей и сухожилий (при частичном гидролизе нерастворимого белка коллагена образуется желатина), — неполноценный белок. Желатина не содержит триптофана, валина и очень мало содержит или совсем не содержит треонина. [c.390]


    Антагонизм между природными аминокислотами отмечен также у животных. У крыс, получавших рационы с высоким содержанием лейцина, наблюдалось торможение роста при добавлении к рациону изолейцина действие лейцина частично снималось [205]. Если, помимо изолейцина, добавляли еше и валин, то нормальный рост восстанавливался полностью [273]. При соответствующих условиях питания можно наблюдать антагонизм между фенилаланином и изолейцином, фенилаланином и вали-ном, треонином и фенилаланином [273, 296]. При увеличении количества белка в рационах, содержащих казеин и желатину или казеин и окисленный казеин, у крыс возникают нарушения, говорящие о неправильном соотношении между аминокислотами. Наступающее при этом торможение роста, повышенная экскреция триптофана с мочой и снижение уровня содержания триптофана в плазме крови устранялись при добавлении к рациону триптофана, но не снимались никотиновой кислотой [288, 297]. [c.146]

    Как уже упоминалось, желатина вызывает изменение окраски красно-фиолетового комплекса германия с ПФ [1]. Наши опыты показали, что в присутствии ряда аминокислот (аргинин, лизин, глицин, валин и др.) и неорганических электролитов, как и в присутствии желатины, образуется не красно-фиолетовое, а синее соединение германия с ПФ. Зеленый цвет описанного в литературе соединения в присутствии желатины [1] обусловлен, вероятно, смешением синей окраски комплекса и желтой окраски избытка ПФ. В присутствии определенных количеств желатины, аминокислот или неорганических электролитов окрашенное в синий цвет соединение германия с ПФ выделяется в виде осадка. Концентрация неорганических электролитов, при которой про- [c.70]

    При хроматографировании в этой системе гидролизатов желатина, казеина, жмыха поджелудочной железы отмечено четкое отделение от суммы следующих аминокислот лейцина, валина, пролина, аланина, лизина, а также глицина в нейтральной фракции, полученной из этих гидролизатов. [c.43]

    Состояние белкового обмена целостного организма зависит не только от количества принимаемого с пищей белка, но и от качественного состава его. В опытах на животных было показано, что получение одинакового количества разных пищевьгх белков сопровождается в ряде случаев развитием отрицательного азотистого баланса. Так, скармливание равного количества казеина и желатина крысам приводило к положительному азотистому балансу в первом случае и к отрицательному—во втором . Имел значение различный аминокислотный состав белков, что послужило основанием для предположения о существовании в природе якобы неполноценных белков. Оказалось, что из 20 аминокислот в желатине почти отсутствуют (или содержатся в малых количествах) валин, тирозин, метионин и цистеин кроме того, желатин характеризуется другим, отличным от казеина процентным содержанием отдельных аминокислот. Этим можно объяснить тот факт, что замена в питании крыс казеина на желатин приводит к развитию отрицательного азотистого баланса. Приведенные данные свидетельствуют о том, что различные белки обладают неодинаковой пищевой ценностью. Поэтому для удовлетворения пластических потребностей организма требуются достаточные количества разных белков пищи. По-видимому, справедливо положение, что, чем ближе аминокислотный состав принимаемого пищевого белка к аминокислотному составу белков тела, тем выше его биологическая ценность. Следует, однако, отметить, что степень усвоения пищевого белка зависит также от эффективности его распада под влиянием ферментов желудочно-кишечного тракта. Ряд белковых веществ (например, белки шерсти, волос, перьев и др.), несмотря на их близкий аминокислотный состав к белкам тела человека, почти не используются в качестве пищевого белка, поскольку они не гидролизуются протеиназами кишечника человека и большинства животных. [c.413]


    Организм животных может синтезировать лишь определенные аминокислоты другие происходят из белков нищи, как уже указывалось выше. Поэтому недостаточно, чтобы пища животных содержала определенное количество белков (определенный процент азота) она должна содержать достаточное количество каждой незаменимой аминокислоты. Белки молока, мяса, рыбы, яиц, мозга, сыворотки, фибрина, сои и пшеничного зародыша содержат незаменимые аминокислоты в адекватном количестве эти белки могут заменять друг друга без какого-либо ущерба. Нанротив, в гемоглобине, желатине и многих белках растений (см. зеин) наблюдается дефицит некоторых незаменимых аминокислот (см. табл. 14). Потребление с пищей исключительно этих белков приводит к серьезным расстройствам (например, к нервным расстройствам у крыс в отсутствие валина). Отсутствие незаменимых аминокислот в белках пищи ярко проявляется на молодых животных, рост которых прекращается или замедляется. Эти явления исчезают при введении в их диету молока. [c.443]

    Гистидин, лизин, триптофан, фенилаланин, лейцин, изолейцин, треонин, метионин и валин считаются незаменимыми аминокислотами для человека. Что означает это утверждение Какое зна шние для человеческого организма имеют другие аминокислоты. Почему казеин является погсноценным, а желатина неполноценным белком  [c.501]

    Потребляемые человеком белковые продукты можно разделить на полноценные белковые продукты, которые содержат все незаменимые аминокислоты, и неполноценные белковые продукты, в которых отсутствует одна илйнесколько незаменимых аминокислот, ifaaeu , например, основной белок молока, с этой точки зрения является полноценным белком, тогда как желатина — белок, получаемый из костей и кожи (при частичном гидролизе нерастворимого белка коллагена и образуется желатина),—неполноценный белок. Желатина не содержит триптофана, валина и треонина (а если последний и содержится, то в очень малых количествах). [c.677]

    И. Е. Плотникова (1949) провела систематическое исследование аминокислотного состава проколлагенов, выделенных из кожи человека и кожи животных различных классов позвоночных. Полученные двухмерные бумажные хроматограммы дали возможность установить, что проколлагепы, выделенные из кожи человека и позвоночных животных, содержат следующие аминокислоты аспарагиновую кислоту, глютаминовую кислоту, серии, гликокол, лизин, аргинин, аланин, гистидин, оксипролин, пролин, валин, лейцин, фенилаланин. По составу аминокислот, проявляющихся на хроматограммах, проколлагены оказались близкими к желатине, отличаясь от нее отсутствием тирозина. [c.157]

    Все волокнообразующие белки, например фиброин шелка и коллаген, построены преимущественно из бифункциональных аминокислот это практически линейные, хорошо кристаллизующиеся полипептидные цепи (см. ниже). Они обладают высокой разрывной прочностью при сравнительно низком удлинении. Нерастворимость шелка обусловлена кристаллизацией фиброина после выделения раствора из желез шелковичного червя. Растворение белка, так же как и растворение целлюлозы, затрудняется вследствие образования большого числа водородных связей между пептидными группами (растворители для целлюлозы, см, стр. 142—143, пригодны также для шелка из этих растворов белок люжет быть высажен добавлением раствора соли). Коллаген, по-видимому, имеет слабо выраженную сетчатую структуру, которая разрушается при гидролизе (образование желатины). Молекулярный вес коллагена превышает 1-10 (установлено путем измерения вязкости в 0,1%-ном растворе моно-хлоруксусной кислоты в воде). Очень высокий молекулярный вес этих полимеров вполне вероятен, очевидно, этим объясняется неудача попыток Грассмэна обнаружить концевые группы.. Эластин представляет собой высокоэластичное вещество с изотропной структурой, которая при вытягивании превращается в анизотропную. Поэтому эластин при вытягивании ведет себя как натуральный каучук. Его молекула также состоит преимущественно из бифункциональных аминокислот, которые вследствие своего строения затрудняют кристаллизацию (валин, пролин, фенилаланин) наличие некоторого числа химических связей между макромолекулами обусловливает абсолютную нерастворимость эластина. Эластин чрезвычайно устойчив к гидролизу (устойчивее, чем коллаген). Роль, выполняемая эластином в животных организмах, находится в соответствии с его аминокислотным составом больпюе количество [c.101]

    Значительных успехов в разделении аминокислот методами электродиализа достигли Рязанов и сотр. [52, 53]. Исследования электродиализа гидролизата желатины (pH 5—7), циркулирующего через среднюю камеру ячейки, отделенную от катодной камеры катионитовой мембраной марки ] К-40, а от анодной — анионитовой мембраной марки МА-40, показали, что в средней камере можно выделить нейтральные моноаминокислоты (пролин, оксипролин, а-аланин, лейцин, валин, глицин), свободные от примесей основных и кислых аминокислот [52]. Однако некоторое количество нейтральных кислот попадает вместе с аргинином, лизином и гистидином в катодную камеру и с аспарагиновой и глутаминовой кислотами — в анодную. Следовательно, этот способ дает возможность получить лишь чистую фракцию нейтральных моноаминокарбоновых кислот. Уход части нейтральных кислот из центральной фракции авторы [53] объясняют следующим образом. Во-первых, pH граничных слоев мембран отличаются от значения pH в объеме электролита. Это приводит к тому, что нейтральные кислоты, попадая в граничные слои мембран, заряжаются отрицательно. В результате аминокислоты принимают участие в переносе тока, попадают и в катодное, и в анодное пространства даже при pH раствора в средней камере, близком к изоэлектрической точке. Во-вторых, согласно [53], возможна диффузия этих кислот как через катионообменную, так и через анионообменную мембраны. Однако этот источник потерь не может играть существенной роли [c.270]


    Юнге осуществил хроматографический анализ синтетической смеси Ы-ацетилбутиловых эфиров глицина, аланина, валина, лейцина, изолейцина и пролина на гидрированном сафлоровом масле при отношении жидкость — твердый носитель, равном 1 4. Пролин элюировался с колонки примерно через 60 мин при температуре термостата 220°. Глицин выходил перед аланином, а пики, соответствовавшие лейцину и изолейцину, не были разделены. Эти же аминокислоты были найдены в гидролизате желатины вместе с рядом неидентифицированных соединений, пики которых появлялись после пика пролина. [c.532]


Смотреть страницы где упоминается термин Валин желатине: [c.96]    [c.198]    [c.127]   
Аминокислотный состав белков и пищевых продуктов (1949) -- [ c.362 , c.367 ]




ПОИСК





Смотрите так же термины и статьи:

Валин

Желатина

Желатина желатин

Желатина изолейцина и валина



© 2025 chem21.info Реклама на сайте