Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Автотрофные клетки организмы

    В зависимости от источника питания различают бактерии ав-тотрофы и гетеротрофы. Автотрофные организмы утилизируют и окисляют минеральные соединения, гетеротрофные организмы используют в качестве источника энергии и биосинтеза клетки готовые органические вещества, находящиеся в сточной воде. Механизм биологического окисления в аэробных условиях (в присутствии растворенного кислорода) гетеротрофными бактериями может быть представлен следующей схемой [55]  [c.146]


    Среди бактерий в очистных сооружениях сосуществуют гетеротрофы и автотрофы, причем перимущественное развитие та или иная группа получает в зависимости от условий работы системы. Эти две группы бактерий различаются по своему отношению к источнику углеродного питания. Гетеротрофы используют в качестве источника углерода готовые органические вещества и перерабатывают их для получения энергии и биосинтеза клетки. Автотрофные организмы потребляют для синтеза клетки неорганический углерод, а энергшо получают за счет фотосинтеза, используя энергию света, либо хемосинтеза путем окисления некоторых неорганических соединений (например, аммиака, нитритов, солей двухвалентного железа, сероводорода, элементарной серы и Др.). [c.100]

    Автотрофные организмы получают всю серу и азот, содержащиеся в клетке, из неорганических соединений. Автотрофное усвоение неорганических соединений серы и азота широко распространено в природе. Этой способностью обладают высшие зеленые растения, папоротники и мхи. Кроме того, известно, что многие водоросли, грибы и бактерии могут расти на среде, содержащей в качестве единственного источника серы сульфаты и в качестве единственного источника азота нитраты, аммиак и даже N2. Среди огромного разнообразия живых существ можно найти организмы, которые составят непрерывный ряд от полной автотрофности до почти полной гетеротрофности. Например, млекопитающие должны получать весь азот в виде органических соединений и почти всю серу в виде органических восстановленных соединений. Однако, как показали чрезвычайно интересные с эволюционной точки зрения исследования, проведенные с 8 -сульфатами, ткани эмбрионов высших животных обладают некоторой, хотя и ограниченной, способностью к восстановлению сульфатов и фиксации восстановленной серы с образованием цистеина. По-видимому, использование чувствительных методов с применением изотонов покажет, что полная гетеротрофность имеет место лишь в очень редких случаях. Все дело в том, соот- [c.274]

    В то время как клетки автотрофных организмов могут сами синтезировать все аминокислоты (используя пути, описанные в последующих разделах), другие клетки получают многие аминокислоты в готовом виде. Человек и другие высшие животные должны получать с пищей ряд незаменимых аминокислот. Кроме того, клетки определенной ткани могут поглощать аминокислоты, синтезированные в другой ткани. [c.93]

    Для поддержания процессов жизнедеятельности все организмы должны получать свободную энергию из внешней среды. У автотрофных организмов метаболизм сопряжен с простым экзергоническим процессом, протекающим в их окружении зеленые растения используют энергию солнечного света некоторые автотрофные бактерии существуют за счет реакции Fe +- Fe . Гетеротрофные же организмы получают энергию в результате сопряжения метаболизма с процессом распада сложных органических молекул, поступающих извне. Во всех этих процессах центральную роль играет АТР, обеспечивающий передачу свободной энергии от экзергонических процессов к эндергоническим (рис. 11.3 и 11.4). Как видно из рис. 11.5, АТР—это нуклеотид, содержащий аденин, рибозу и три фосфатные группы. В реакциях, протекающих внутри клетки, АТР участвует в виде -комплекса (рис. 11.6). [c.113]


    Есть между этими двумя группами и еще одно важное различие. Многие ав-тотрофные организмы осуществляют фотосинтез, т. е. обладают способностью использовать энергию солнечного света, тогда как гетеротрофные клетки добывают необходимую им энергию, расщепляя органические соединения, вырабатываемые автотрофами. В биосфере автотрофы и гетеротрофы сосуществуют как участники единого гигантского цикла, в котором автотрофные организмы строят из атмосферной СО2 органические биомолекулы и часть их при этом выделяет в атмосферу кислород. Гетеро-трофы используют вырабатываемые автотрофами органические продукты в качестве пищи и возвращают в атмосферу СО2. Таким путем совершается непрерывный круговорот углерода и кислорода между животным и растительным миром. Источником энергии для этого колоссального по своим масштабам процесса служит солнечный свет (рис. 13-1). [c.376]

    В главе IV мы установили, что двуокись углерода, как и карбоксильная группа, может быть восстановлена in yitro только посредством сильных восстановителей, которые вряд ли встречаются в живых клетках. Но пример автотрофных бактерий показывает, что организмы могут образовывать вещества, способные восстанавливать двуокись углерода даже в отсутствие света. До сих пор мы не имеем сведений о природе этих веществ, но можем предположить, что те же восстановители вызывают восстановление двуокиси углерода и у фотосинтезирующих высших растений. [c.221]

    Поддёржанию микроорганизмов во взвешенном состоянии способствует налкчие у некоторых микроорганизмов в клетках газовых пузырьков, как это наблюдается у раковинной амебы АгсеИа. Особенно характерным для зоопланктона является перемещение по вертикали, происходящее при изменении внешних условий (температура, освещение и др.). Размеры организмов микропланктона колеблются от 50 мкм до 1 мм. Это — простейшие, коловратки, некоторые водоросли и бактерии. К карликовому планктону (нанно-планктон) относятся микроорганизмы, размер которых менее 50 мкм (бактерии, фаги, вирусы). Среди планктонных микроорганизмов широко представлены бактерии, вызывающие биохимическое окисление органических веществ, но встречаются и автотрофные организмы. Бактерии могут вместе с водорослями, простейшими развиваться на деструктурированных частицах органических остатков (детрите). [c.231]

    Этот процесс осуи1ествляется только в аэробных условиях. Энергия, выделяющаяся при этом, расходуется на синтез органического вещества клетки, так как нитрозобактерии — автотрофные организмы. Окисление аммонийного азота начинается только после полного разложения биологически разлагаемых органических примесей. Наиболее энергичными окислителями аммиака являются бактерии рода Nitrosomonas, представляющие собой подвижные клетки овальной формы с длинным жгутиком. [c.261]

    Среди многообразных взаимосвязанных и сопряженных физиологических пропессов в зеленом автотрофном растении центральное по своей многозначности положение занимает рост. Начиная от удвоения молекулы биополимера, увеличения размеров субклеточных образований, процессов дифференциации клетки, тканей, органов до видимого линейного, объемного увеличения всего организма в целом, ростовые процессы являются одним из основных и наиболее 31начительных механизмов саморегуляции жизненных процессов растения. Изучение жизни растений в природной среде и опыте при резком отклонении температурного режима от оптимального привело к убеждению, что в этом случае рост выступает еще и в роли регулятора защитных процессов, приспособления, формирования шовышеиной устойчивости растений к экстремальным температурным условиям среды. Факты вторичного роста, цветения, плодоношения многократно отмечены в литературе, однако попытки анализа сущности явления пока еще очень немногочисленны. Как уже указывалось вначале, обращало на себя внимание своеобразие этого вторичного роста, его необычная окорость, мощность образующихся органов, иногда даже гигантизм, необыкновенно [c.145]

    Образующееся в ходе фотосинтеза органическое вещество и заключенная в последнем химическая энергия являются материальным источником, за счет которого осуществляется жизнедеятельность всего огромного мира гетеротрофных организмов, а также автотрофных организмов в периоды, когда они лишены возможности осуществлять фотосинтез. Из этого следует, что в светлые часы суток на потребности самих зеленых растений в пластическом и энергетическом материале расходуется лишь небольшая часть создаваемых ими органических соединений. Ббльщая же часть последних остается в это время неиспользованной и откладывается в запас, причем это отложение в запас осуществляется в форме более или менее устойчивых стабильных соединений, в достаточной мере защищенных от интенсивных превращений. Возможность последующего использования этих соединений связана с их лабилизацией и превращением в разнообразные богатые энергией промежуточные продукты, которые обладают высокой реакционной способностью и могут быть использованы клеткой непосредственно для синтеза элементов протоплазмы, а также в разнообразных других целях (поддержание структуры протоплазмы, поглощение и передвижение вещества по растению, вторичные синтетические процессы и др.). [c.308]


    Изменение реакций организма на различные партии биомассы водородных бактерий можно объяснить как адаптацию организма. Возможно, это связано со специфическими особенностями биомассы (биохимическим составом, сопутствующей микрофлорой и т. д.), что определяется условиями культивирования автотрофное, гетеротрофное, периодическое, непрерывное). Видимо, отрицательное влияние на организм человека биомассы водородных бактерий связано с содержанием в ней биохимических компонентов, не свойственных традиционным продуктам питания, но специфичных для бактериальной клетки (поли-Р-оксимасляная и циклонропановая кислоты, D-аминокислоты, липополисахариды и т. д.). Отметим, что данных по биохимическому составу используемой в рационах биомассы водородных бактерий нет, не указан и тип культивирования (периодическое, непрерывное). Так как во всех случаях биомассу водородных бактерий отмывали, следовательно, гастрокишечные нарушения у человека связаны непосредственно с клеткой, а не с ее экстрацеллюлярными метаболитами. [c.124]

    Недостаток метода классификации бактерий на основании сравнения их геномов состоит в том, что с его помои ью оценивается суммарно вся генетическая информация клетки, что делает этот метод нечувствительным к незначительным информационным отклонениям, которые, однако, могут определять важные свойства организма. Поясним это примером. Для автотрофной ассимиляции углекислоты клетка помимо ферментов, имеющихсяу гетеротрофных организмов, должна иметь два специфических фермента рибулозодифосфаткарбоксилазу и фос-форибулокиназу. Информация об этих ферментах записана в геноме с помощью 3-1Q2 пар оснований. Всего же бактериальный геном содержит порядка 10 пар оснований. Таким образом, признак, характеризующий способность к автотрофной ассимиляции углекислоты у бактерий, приводит к ничтожному изменению в общем строении бактериального генома, которое не определяется используемым методом. Однако важность этого признака, определяющего способность микроорганизмов к автотрофии, в таксономическом отношении не вызывает сомнений. [c.139]

    Автотрофный (фототрофный) тип питания — главная особенность растительного организма. Питание за счет фотосинтеза поддерживается корневым питанием — поглощением воды и минеральных солей. Однако все клетки и ткани растения способны питаться и гетеротрофно. Это происходит во время прорастания (используются запасные вещества семян, клубней и т. д.) и ночью, когда фотосинтез отсутствует. К гетеротрофному питанию способны все иезеленые органы. Отсюда понятно существование растенийтпаразитов и насекомоядных растений. [c.29]

    В основе свойства насекомоядных растений питаться плотоядно лежит способность любой растительной клетки использовать для своего питания органические вещества, освобождаемые из запасной формы или притекающие из других частей растения. В целом растительные организмы, как правило, автотрофны, 1 0 углеродные соединения, синтезируемые в ходе фотосинтеза из СО2И воды, затем поступают из листьев во все другие части растения, которые питаются за счет этих готовых органических веществ, т. е. гетеротрофно. В тех случаях, когда растительный организм использует запасные органические вещества (углеводы, белки, жиры) или биополимеры цитоплазмы (например, из стареющих листьев), эти вещества должны быть предварительно гидролизованы и таким образом превращены в транспортабельную и усвояемую форму. Этот процесс принципиально не отличается от пищеварения у насекомоядных растений. [c.283]

    Удлинение нити за счет деления клеток — процесс очень медленный. Появление у растительных клеток способности быстро удлиняться путем образования большой центральной вакуоли и растяжения клеточной стенки явилось приобретением, которое можно назвать ароморфозом. Действительно, для индивидуальной клетки ее удлинение и постенное расположение цитоплазмы оказались оптимальными для поглощения света хлоропластами. Нитчатая водоросль, удлиняющаяся за счет растяжения клеток, получила возможность гораздо быстрее двигаться к свету, поскольку длина клетки за сравнительно короткое время увеличивается в десятки и сотни раз. Такая форма движения по необходимости должна быть необратимой и поэтому одновременно является элементом морфогенеза. Удлинение клеток за счет роста рястяжением оказалось настолько удачной формой движения, что наряду с фотосинтезом стало основой развития растительного мира. Легко убедиться, что рост растяжением характерен только для растительных организмов ни у бактерий, ни у животных такого способа роста клеток не существует, так как рост растяжением возник у растений как способ движения многоклеточных автотрофных организмов (В. В. Полевой, Т. С. Саламатова, 1985). [c.411]

    Исследование формирования биологической продуктивности водных экосистем и оценка качества природной среды остаются актуальными на протяжении последних десятилетий. В этой связи очевидна необходимость поиска соответствующих показателей, обладающих высокой степенью информативности с одной стороны и определяемых оперативно с другой. В полной мере всем этим требования отвечают растительные пигменты, которые образуются в клетках автотрофных организмов, вовлекаются в биотический круговорот и в нативном или трансформированном виде повсеместно присутствуют в водоеме. За полувековой период исследований волжских водохранилищ накоплены огромные материалы по содержанию пигментов в воде и донных отложениях (Минеева, 2003 Сигарева, Пырина, 2003). Эти материалы неоднократно рассматривались и еще будут рассматриваться при решении различных вопросов фундаментальной и прикладной гидробиологии и биогеографии. В книге затронуты лишь некоторые аспекты этой поистине обширной проблематики, однако и они не оставляют сомнений в универсальности пигментных характеристик для гидроэкологических исследований. [c.127]


Смотреть страницы где упоминается термин Автотрофные клетки организмы : [c.153]    [c.34]    [c.144]    [c.10]    [c.54]    [c.68]    [c.194]    [c.332]   
Основы биохимии Т 1,2,3 (1985) -- [ c.375 , c.377 ]




ПОИСК





Смотрите так же термины и статьи:

Автотрофность

Автотрофные организмы



© 2025 chem21.info Реклама на сайте