Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Серии спектральные щелочных элементов

    Щелочные элементы также имеют один оптический электрон в -состоянии (З5). Но при возбуждении атома щелочного элемента валентный электрон переходит в р-состояние с тем же главным квантовым числом (Зр). Энергия, необходимая для такого перехода, составляет всего 1,5—2 эв. Поэтому резонансные линии щелочных элементов лежат в видимой и ближней ИК-об-ластях спектра. Усложнение внутреннего строения атомов щелочных металлов и других элементов проявляется в расщеплении энергетических уровней и линий (мультиплетность) и в увеличении числа спектральных серий. [c.22]


    Спектры элементов второй группы периодической системы (Ве, щелочноземельные, 2п, Сс1, Н5) характеризуются двумя системами уровней, каждая из которых аналогична системе уровней щелочных элементов. Из-за специфического взаимодействия двух оптических электронов друг с другом число спектральных серий для этих элементов увеличивается в два раза. Потенциалы возбуждения линий второй группы периодической системы вследствие слабой связи оптических электронов с атомом невелики ( 4 эв), но все-таки выше, чем у щелочных металлов. При переходе от бериллия к барию потенциалы возбуждения уменьшаются, что сопровождается перемещением резонансных линий из УФ-области в видимую. Несмотря на наличие двух оптических электронов, переход атома в возбужденное состояние связан с переходом лишь одного оптического электрона. [c.22]

    Линии с общим нижним и разными верхними уровнями образуют серию спектральных линий. В спектре элемента может быть много таких серий. Общее число серий и линий в спектре элемента зависит от числа электронов в атоме и от их распределения по оболочкам. Сложные спектры с большим числом линий имеют элементы Ре, Со, Сг, У , Та, Мо, ЫЬ, 2г и редкоземельные элементы. Наиболее простые спектры у водорода и щелочных металлов. [c.169]

    Одноэлектронные спектры элементов с внешней -оболочкой имеют щелочные металлы Ма, К, КЬ, Сз, Рг. В нормальном состоянии имеется один внешний х-электрон, переход которого на более высокие уровни приводит к возникновению спектра с хорошо выраженными спектральными сериями. Похожими спектрами обладают также Си, Ag и Аи, имеющие один внешний электрон ш помимо последней заполненной оболочки (и - 1 ) / . Однако на этот простой одноэлектронный спектр, обусловленный переходами внешнего электрона, налагается более сложный спектр, получающийся при возбуждении одного из электронов оболочки (п - 1) / . К первому типу относится и спектр водорода, который занимает особое место по своей простоте и значению для понимания всех остальных спектров. [c.344]

    Согласно числу возможных значений магнитного квантового числа гп, для отношения интенсивности отдельных компонент триплетов главных спектральных серий элементов с двумя валентными электронами существует правило, аналогичное правилу отношения интенсивностей дублетов главной серии щелочных металлов, а именно интенсивности линии главной серии с исходными уровнями Ро, Р[ и Р-2 и одинаковым конечным уровнем 5о относятся как 1 3 5. [c.336]


    Осадки отмывали от топлива в изопентане, сушили до постоянного веса при 100—105° и затем подвергали элементарному анализу. Серу определяли методом сожжения в трубке [4], азот — по Дюма, золу — сжиганием в муфельной печи при температуре 550° до постоянного веса. Элементарный состав золы определяли спектральным эмиссионным анализом на приборе ИСП-28 полуколичественным методом на 28 элементов, щелочные металлы — спектрометрически на стилометре СТ-7. Медь определяли на фотометре Пульфриха колориметрически, путем образования окрашенного комплекса сернокислой меди с аммиаком [5]. Точность определения 0,1%. [c.223]

    Общая формула для спектральных серий щелочных элементов соыасно (8.3) имеет вид [c.60]

    Бунзен и Кирхгоф сами продемонстрировали эффективность этого метода. В 1860 г., исследуя образец минерала, они обнаружили его в спектре линии, которые не принадлежали ни одному из известных элементов. Начав поиски нового элемента, они установили, что это щелочной металл, близкий по своим свойствам натрию и калию. Бунзен и Кирхгоф назвали открытый ими металл цезием (от латинского саез1и5 — сине-серый), так как в спектре этого металла самой яркой была именно синяя линия. В 1861 г. эти ученые открыли еще один щелочной металл, который также назвали по цвету его спектральной линии рубидием (от латинского гиЬ1с1из — темно-красный). [c.103]

    После ряда открытий, в частности после обнаружения волновых свойств электронов и других микрочастиц, стало ясно, что теория Бора недостаточная. Она потерпела неудачу даже в попытке построения второго по сложности атома — атома гелия, состоящего из ядра и двух электронов. Она не смогла объяснить обнаруженной мульти-плетности (множественности) спектральных линий в атомных спектрах элементов. Например, спектральные линии щелочных металлов оказались дублетами с очень малым отличием длин воли линий, составляющих эти дублеты. Также линии серии Бальмера в спектре водорода не являются единичными и каждая расщеплена на две очень близко расположенные линии. Это объяснили Уленбек и Гоудсмит в 1925 г. допущением у электронов вращательного (веретенообразного)-движения, что обусловливает появление у них, кроме орбитального, еще спинового вращательного момента, а также спинового магнитного момента (спин — от английского to spin — вращаться). Ориентация спинового момента электрона в дйух противоположных [c.62]

    После ряда открытий, в частности после обнаружения волновых свойств электронов и других микрочастиц, стало ясно, что теория Бора недостаточна. Она потерпела неудачу даже в попытке построения второго по сложности атома — атома гелия, состоящего из ядра и двух электронов, и не смогла объяснить обнаруженной мульти-плетности (множественности) спектральных линий в атомных спектрах элементов. Например, спектральные линии щелочных металлов оказались дублетами с очень малым отличием длин, волн линий, составляющих эти дублеты. Также линии серии Бальмера в спектре водорода не являются единичными и каждая расщеплена на две очень близко расположенные линии. Это объяснили Уленбек и Гоудсмит в 1925 г. допущением у электронов [c.76]

    Это означает, что волновое число каждой спектральной линии может быть представлено в виде разности двух термов, один из которых постоянен. В данном случае — постоянный терм. Следуя работе Лизинга и Дьюара, Ридберг классифицировал большое число серий в спектрах более сложных элементов, например щелочных металлов. Он нашел, что есть серии, которые имеют очень резкие линии, и серии, у которых линии диффузные. Кроме того, Ридберг отметил также тин серий, у которых линии обладают наибольшей по сравнению с другими сериями яркостью он назвал их главными сериями. Имеется и еще один тип, названный фундаментальными сериями. Эти серии связаны формулой типа [c.24]

    При спектральном определении примесей металлов используется самая разнообразная техника. При анализе растворимых солей щелочных металлов применяется графитовый электрод с пористым дном и искровой разряд. Чувствительность метода определения ряда примесей элементов всего5-10 % [165]. Металл переводят в раствор при растворении в воде или этаноле, далее через раствор пропускают СО2 и получают карбонат. Высушенные карбонаты смешивают либо с графитом, либо с серой и спектрографируют в дуге постоянного или переменного тока. Добавление серы значительно увеличивает чувствительность определения Sb и Ва [339, 340]. [c.158]

    Спектральный метод открывает большие возможности для изучения электронных оболочек атомов (стр. 81). Спектры щелочных металлов очень простые, и этим они похожи на спектры водорода и однократно ионизированного гелия. Так же как и в этих спектрах, спектральные линии (пламенные и дуговые) щелочных металлов могут быть сгруппированы в несколько серий, состоящих из последовательности все более сближающихся и ослабевающих линий. Спектры заканчиваются областью сплошного поглощения. Длина волны каждой линии равна разности между постоянным и текущим термами, а вся серия передается формулой, аналогичной известной формуле для спектра водорода (стр. 68). D-Линия натрия является первой линией главной серии этого элемента. Эта линия появляется (при испускании) тогда, когда валентный электрон, предварительно возбужденный до Зр-уровня, перескакивает обратно на свой основной Зз-уровень. Поскольку этот перескок осуществляется чаще всего, D-линия является самой интенсивной из всех линий натрия. Остальные линии главной серии появляются в результате перескока электрона с уровней Ар, 5р, 6р и т. д. обратно на Зз-уровень. Основным термом первой побочной серии (диффузная серия) является Зр. Спектральные линии этой серии появляются при перескоке электрона с уровней 3d, 4d, 5d и т. д. на Зр-уровень. Аналогично образуются и остальные серии. [c.626]



Смотреть страницы где упоминается термин Серии спектральные щелочных элементов: [c.132]    [c.31]    [c.11]   
Введение в теорию атомных спектров (1963) -- [ c.59 ]




ПОИСК





Смотрите так же термины и статьи:

Спектральные серии



© 2024 chem21.info Реклама на сайте