Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Спиновый магнитный момент ядра

    Нуклоны. Тяжелые элементарные частицы — протоны и нейтроны (нуклоны), а также построенные из них атомные ядра тоже обладают собственными магнитными моментами. По аналогии с электроном, можно было бы ожидать, что протон как заряженная элементарная частица, спин которой, согласно (519), равен й (или (]/3/2)й), должен обладать спиновым магнитным моментом [c.290]

    Спин-орбитальная связь. Спин-орбитальная связь, благодаря которой осуществляется взаимодействие между спиновым и орбитальным магнитными моментами, появляется в результате взаимодействия спинового магнитного момента электрона с магнитным полем, возникающим в результате орбитального движения электрона. Рассмотрим круговое дви кение электрона по орбитали с радиусом г вокруг ядра с зарядом г. В системе координат, связанной с электроном, вращается ядро со скоростью, равной скорости вращения электрона, но только в противоположном направлении. Такое вращение эквивалентно электрическому току 2вь, где о — вектор скорости. В точке расположения электрона возникает магнитное поле напряженностью [c.12]


    Рассмотрим в качестве примера атом, обладающий одним неспаренным электроном. Предположим, что ядро этого атома не обладает магнитным моментом. Магнитные свойства такого атома связаны с наличием неспаренного электрона и имеют двоякую природу. Они связаны как с орбитальным движением электрона, так и с наличием у него нескомпенсированного спинового магнитного момента. Движущийся по орбите электрон можно рассматривать как круговой ток, обладающий магнитным моментом  [c.224]

    Спектроскопия ЯМР основана па способности некоторых ядер атомов, обладающих спиновым магнитным моментом, поглощать кванты электромагнитного излучения радиоволнового диапазона. Такими свойствами обладают ядра атомов с массой, выражаемой нечетным числом ( н, д С, д О, р, 1дР и др.), а также ядра атомов с нечетным порядковым номером и массой, выражаемой четным числом ( Н, Ы). Ядерный спин (I) может быть целой или полуцелой величиной  [c.231]

    Зависимость мощности максимумов от атомных номеров. Как электронная плотность атома, так и его электростатическое поле возрастают симбатно с ростом атомного номера. Поэтому в обоих методах (РСА и ЭСА) исследователь сталкивается с затруднениями, когда требуется различить атомы с близкими атомными номерами. Ядерная плотность не является симбатной функцией атомного номера. Атомы, соседние в периодической таблице, например Ре, Со и N1, дают в Фурье-синтезах максимумы, совершенно различные по высоте. Особенно удобен НСА для установления позиций самых легких атомов материи — атомов водорода, фиксация которых в случае РСА не всегда возможна, а точность определения координат заведомо низка. Кроме того, дифракция нейтронов зависит от спиновых магнитных моментов ядер. Для потока нейтронов ядра одного и того же элемента, не совпадающие по ориентации спинового момента, являются разными ядрами. Поэтому НСА широко используется для решения специальных задач, таких, как анализ упорядоченности сплавов, образованных металлами с близкими атомными номерами анализ магнитной структуры кристалла выявление и уточнение координат атомов водо- [c.127]

    Метод. Многие атомные ядра обладают спиновым магнитным моментом, связанным с циркуляцией атомного заряда вокруг оси ядра. По значению спинового квантового числа / атомные ядра можно разделить на следующие группы  [c.596]

    Суть спин-спинового взаимодействия состоит в следующем. Пусть ядро какого-либо атома в молекуле имеет спиновый магнитный момент Мяд фО. Магнитное поле, создаваемое этим моментом, ориентирует магнитные моменты электронов, окружающих ядро (парамагнитный эффект). Ориентированные в одном направлении магнитные моменты электронов, в свою очередь, создают определенным образом на-.правленное магнитное поле. Если в молекуле есть другое ядро с М ял то его магнитный момент ориентирован в соответствии с направлением магнитного поля электронов, а так как это магнитное поле направлено вдоль поля первого [c.126]


    Поведение молекулы в магнитном поле зависит от трех величин одна определяет всегда имеющийся эффект, индуцируемый самим полем, а две другие характеризуют постоянные величины, а именно суммарный спиновый магнитный момент и орбитальный момент электронов. Условия проявления двух последних характеристик в молекулах углеводородов совсем особые полученные данные относятся к возбужденным состояниям, и мы не будем ими заниматься. Эффект индукции, всегда наблюдающийся под влиянием магнитного поля, является следствием диамагнетизма, существование которого может быть объяснено на простом атомном примере. В магнитном поле электроны атома получают небольщой дополнительный момент количества движения и связанный с ним магнитный момент аналогично тому, как в витке проводника, перпендикулярном переменному магнитному полю, возникают ток и связанное с ним магнитное поле. Индуцированное поле противоположно индуцирующему и пропорционально сечению витка, т. е. квадрату радиуса электронной орбиты. Каждый /-электрон атома вносит свой вклад, пропорциональный г], т. е. усредненному квадрату его расстояния от ядра, что приводит к выражению для молекулярной восприимчивости [c.31]

    Если ядро имеет ненулевой спин, то существует взаимодействие между ядерным спиновым магнитным моментом, спиновым и орбитальным магнитным моментом электрона, которое ведет к так называемой сверхтонкой структуре атомных спектров. Полный уг-—> [c.93]

    Если ядро имеет ненулевой спин, то существует взаимодействие между ядерным спиновым магнитным моментом, спиновым и орбитальным магнитным моментом электрона, которое ведет к так называемой сверхтонкой структуре атомных спектров. Полный угловой момент F атома есть сумма полного момента всех электронов J и спинового момента ядра Г. [c.84]

    Предположим, что ядро имеет магнитный момент диполя (т.е. его спин отличен от нуля) и в атоме находится один неспаренный электрон. В общем случае результат взаимодействия моментов ядра и электрона зависит от нескольких факторов (ориентация диполя ядра и спинового магнитного момента, относительное расположение спинов). Однако если атом находится в магнитном поле, то оба момента оказываются параллельными друг другу [c.81]

    Спин-орбитальная связь. Спин-орбитальная связь появляется в результате взаимодействия спинового магнитного момента электрона с магнитным полем, возникающим в результате орбитального движения электрона. Рассмотрим круговое движение электрона по орбитали с радиусом г вокруг ядра с зарядом В системе координат, связанной с электроном, вращается ядро со скоростью, равной скорости вращения электрона, но только в противополож- [c.228]

    Существуют и другие, магнитные по своему происхождению, эффекты, влияющие на уровни энергии атомов. Электрон, движущийся вокруг ядра, может создать магнитное поле, которое будет взаимодействовать со спиновым магнитным моментом электрона. Это называется спин-орбитальной связью. Различные ориентации электронного спина относительно орбитального [c.243]

    Атомные ядра и электроны обладают магнитными моментами. Это свойство используют в технике магнитной резонансной спектроскопии наложение магнитного поля на ядра и электроны приводит к расщеплению квантовых состояний магнитного момента на ряд энергетических уровней (расщепление Зеемана). Относительно направления приложенного магнитного поля магнитный момент ориентируется в определенных направлениях, отличающихся по магнитной энергии. Наряду с магнитным моментом, ядра и электроны имеют спиновый момент количества движения. Компонент момента количества движения вдоль направления приложенного магнитного поля является целым или полуцелым числом, кратным основной единице момента количества движения Ь (константа Планка, деленная на 2ц). Ядро (или система электронов) со спином / (или 5) могут иметь только 2/ -Ь 1 различных ориентаций в постоянном магнитном поле и, следовательно, 2/ +1 состояний с различной магнитной энергией. Переходы магнитного момента между этими состояниями, сопровождающиеся резонансным поглощением магнитной энергии, происходят под действием излучения соответствующей частоты и поляризации. Наблюдая интенсивности и частоты резонансного поглощения в исследуемом материале, можно установить детали окружения ядер и электронов. Так как большинство веществ, представляющих интерес в гетерогенном катализе, является твердыми телами, в последующем изложении будет обращено особое внимание на магнитный резонанс в твердых телах. [c.9]

    Квантование энергии проявляется и в поведении ядерного магнита в магнитном поле. Это квантование представляют таким образом, что разрешенными являются только определенные направления между магнитным моментом ядра и силовыми линиями внешнего магнитного поля, и называют его квантованием по направлению. Число возможных направлений спина зависит от вида ядра. Каждое ядро имеет спиновое квантовое число /, из которого выводится число разрешенных направлений (рис. 2). [c.9]


    Здесь — оператор квадрата спинового момента ядра, а Уг — оператор г-составляющей этого момента. Аналогично тому, как это имеет место в случае электрона [см. (13.41)], для оператора магнитного момента ядра выполняется соотношение [c.355]

    Магнитный момент ядра обусловлен как собственными спиновыми магнитными моментами нуклонов, так и магнитными моментами, вызванными орбитальным движением протонов. Однако вектор магнитного момента ядра не совпадает с вектором момента количества движения и связь между ними достаточно сложна. Тем не менее, магнитный момент пропорционален спину ядра  [c.23]

    Спиновое квантовое число, или просто спин, определяет число уровней энергии, которое возникает при помещении этого магнитного ядра между полюсами большого магнита. Если спин равен нулю (0), то это означает, что ядро не взаимодействует с полем. Поэтому ядра С и 0 нельзя обнаружить в поле этим способом. Если спин равен 1/2, то для такого ядра возникают два уровня энергии. Один соответствует параллельной ориентации магнитного момента ядра [c.219]

    В результате вращения электрона вокруг своей оси возникает спиновый магнитный момент, а двил ение электрона вокруг ядра обусловливает орбитальный магнитный момент. Комбинация этих двух магнитных моментов приводит к наличию парамагнитного момента, обнаруживаемого у некоторых атомов, ионов и молекул. Магнитные моменты обычно выражают в магнетонах Бора р  [c.471]

    В некоторых свободных атомах сами ядра обладают спино.м и соответствующим магнитным моментом. Магнитный момент ядра тоже взаимодействует со спиновым магнитным моментом электрона и влияет на спектр. Величина эффекта зависит от времени пребывания неспаренного электрона вблизи ядра, и, следовательно, по характеру спектра мы получаем количественную характеристику плотности волновой функции неспаренного э.тек-трона у ядер. Если исследуется поведение неспаренного электрона в молекулярных частицах, то из его взаимодействия с ядром можно даже оценить гибридизацию неспаренного электрона. [c.434]

    Согласно принципу неопределенности Гейзенберга АхАЕ=/г, время жизни в данном энергетическом состоянии влняст па определенность зиачения энергии в этом состоянии. Следовательно, от величины Т должна зависеть ширина резоиаисной линии. Поглощенная энергия может передаваться частицами не только за счет теплового движения, но и за счет так называемого спин-спинового взаимодействия. В ядерном магнитном резо 1аисе такое взаимодействие обычно наблюдается у связанных друг с другом частиц с магнитным енином. На каждый магнитный момент ядра действует не только постоянное магнитное поле Яо, но и слабое локальное ноле Ялок, создаваемое соседними магнитными ядрами. Магнитный диполь на расстоянии г создает поле для протона это поле равно 14 Э на расстоянии 1 А. С ростом г напряженность поля Яло быстро падаст, так как существенное влияние могут оказывать только ближайшие соседние ядра. По величине разброса локального поля Ядок при помощи уравнения резонанса мол<но найти разброс частот ларморовой прецессии  [c.256]

    В связи с различными возможностями ориентации ядра А под влиянием магнитного -момента ядра В со спином / линия ядра А расщепляется на мультиплет (2/+1). В присутствии п эквивалентных соседних ядер с ядерным спином I число состояний становится равным 2/г/+1. Распределение интенсивности линий зависит от статистического распределения ядерных спиновых состояний и для ядер с /= /2 соответствует последовательности биномиальных коэффициентов. В качестве примера рассмотрим сверхтонкую структуру спектра молекулы РРз. Резонансная линия ядра Р под влиянием соседного ядра Р со спином /2 расщепляется на две линии (рис. А.27, а). Резонансная линия ядра фосфора под действием трех одинаковых ядер P со спином /= /2 дает квартет с отношением интенсивностей 1 3 3 1 (рис. А.27, б). [c.73]

    Спин-спиновую связь ядер рассматривают иногда как суммарный результат трех эффектов взаимодействия ядер и электронов. Во-первых, магнитный момент ядра оказывает воздействие на электрическое поле, обусловленное орбитальным движением электронов, а это поле, в свою очередь, взаимодействует с магнитным моментом другого ядра. Во-вторых, имеет место взаимодействие магнитных диполей, в котором участвуют не только ядра, но и электроны. И, наконец, учитывая симметрию атомных s-op-биталей, надо иметь в виду отличную от нуля электронную спиновую плотность на ядрах — так называемое контактное взаимодействие Ферми. При спин-спиновой связи протонов именно это взаимодействие является наиболее важным. [c.29]

    Совершенно ясно, что тонкая структура спектров ЯМР жидкостей не обусловлена прямым магнитным взаимодействием через пространство спиновых магнитных моментов (диполей) ядер, хотя подобное взаимодействие играет важную роль при исследовании спектров твердых тел [5, стр. 152 и сл.]. Теоретически показано, что благодаря тепловому хаотическому движению молекул составляющая локального поля у любого ядра, параллельная внешнему полю и возникающая в результате прямого взаимодействия диполей, усредняется до нуля [5, тр. 118]. Это эмпирически подтверждается тем, что резонансные спектры жидкостей, обусловленные только магнитноэквивалентными ядрами, ни при каких условиях не расщепляются. Например, наличие в метильной группе трех протонов сказывается на площади резонансной кривой, но не на ее множественности (см. рис. 5,6). В настоящее время считается, что тонкая структура обусловлена косвенным взаимодействием ядерных спннов через валентные электроны. Хотя суммарный спиновый магнитный момент электронов в ковалентной связи или заполненной оболочке благодаря спариванию электронных спинов равен нулю, ядерный диполь вызывает слабую магнитную поляризацию валентных электронов [32—34]. Электронная спиновая плотность, не равная нулю, появляется в других облястях связи и в зависимости от степени делокализации электронов, возможно, на более далеких расстояниях. Соседний ядерный диполь взаимодействует со спиновой плотностью в этой области, и (квантованная) энергия системы зависит от относительной ориентации обоих спиновых моментов ядер, а также от их ориентации во внешнем магнитном поле. Подобное косвенное взаимодействие не усредняется в жидкостях до нуля за счет хаотического движения молекул и вызывает расщепления, не зависящие от внешнего поля, имеющего определенный порядок величины [32]. Кроме того, как будет показано далее, постулированное взаимодействие таково, что взаимодействие между полностью эквивалентными ядрами не приводит к появлению таких эффектов, которые можно было бы установить экспериментально. [c.289]

    Каждый электрон в структуре вещества можно рассматривать в качестве элементарного магнита. Магнитный момент электрона возникает как следствие его вращения вокруг своей оси, а также вокруг ядра атома. Первую составляющую определяют как спиновый магнитный момент она связана со спиновым квантовым числом электрона. Вторую составляющую называют орбитальным магнитным моментом. Ее величина зависит от орбитального и магнитного квантовых чисел данного электрона. Магнитные моменты многоэлектронных атомов, молекул или ионов представляют собой векторную сумму магнитных моментов всех входящих в их состав электронов. Для оценки магнитных свойств вещества несбходимо просуммировать магнитные моменты всех образующих его атомов, молекул или ионов с внесением поправки на их взаимодействия. В газах взаимное влияние молекул незначительно и мало сказывается на магнитных свойствах вещества в целом. В то же время в жидкостях и особенно в твердых телах взаимодействие частиц может привести к существенным изменениям магнитных характеристик системы. [c.300]

    После ряда открытий, в частности после обнаружения волновых свойств электронов и других микрочастиц, стало ясно, что теория Бора недостаточная. Она потерпела неудачу даже в попытке построения второго по сложности атома — атома гелия, состоящего из ядра и двух электронов. Она не смогла объяснить обнаруженной мульти-плетности (множественности) спектральных линий в атомных спектрах элементов. Например, спектральные линии щелочных металлов оказались дублетами с очень малым отличием длин воли линий, составляющих эти дублеты. Также линии серии Бальмера в спектре водорода не являются единичными и каждая расщеплена на две очень близко расположенные линии. Это объяснили Уленбек и Гоудсмит в 1925 г. допущением у электронов вращательного (веретенообразного)-движения, что обусловливает появление у них, кроме орбитального, еще спинового вращательного момента, а также спинового магнитного момента (спин — от английского to spin — вращаться). Ориентация спинового момента электрона в дйух противоположных [c.62]

    Поглощенная энергия может передаваться частицами не только за счет теплового движения, но и за счет так называемого спин-спинового взаимодействия. В ядерном магнитном резонансе такое взаимодействие обычно наблюдается у связанных друг с другом частиц с магнитным спином. На каждый магнитный момент ядра действует не только постоянное магнитное поле Яо, но и слабое локальное поле Ялок, создаваемое соседними магнитными ядрами. Магнитный диполь на расстоянии г создает поле —,  [c.118]

    Чувствительность метода ЯМР при исследовании некоторого ядра зависит от величины магнитного момента ядра ц, которая определяет разность энергий между ядериыми спиновыми состояниями, а следовательно, и избыток населенности нижнего состояния в соответствии с уравнением (I. 11). Можно показать, что при постоянном поле интенсивность сигнала пропорциональна величине [c.27]

    Расщепление сигналов ЭПР вызвано взаимодействием неспарепного электрона с близлежащими атомными ядрами, которые имеют собственный спиновый магнитный момент (главным образом с водородными атомами). [c.57]

    Возможность наблюдения ядерного магнитного разонанса основана на поглощении или испускании энергии при переходах ядра между различными спиновыми уровнями (зеемановские уровни). Атомное ядро можно представить в виде сплошного шара, содержащего электрически заряженные частицы, которые совершают орбитальное движение. Вращение заряженных частиц индуцирует магнитный момент ядра, и ядро в результате может взаимодействовать с внешним магнитным полем. Если вещество, содержащее атомное ядро с магнитным моментом х и ядерным спином /, поместить в однородное магнитное поле Я, то оно займет один из (2/ -Ь 1) зеемановских уровней. Различия локальных магнитных полей, магнитных моментов и ядерных спинов влияют на положение этих уровней и, следовательно, на спектр ЯМР. [c.456]

    Релаксационный механизм 2, который наиболее часто встречается в непроводящих твердых телах, зависит от числа неспаренных электронов в веществе, в большинстве случаев обусловленного присутствием парамагнитных ионов в кристалле. Однако иногда механизм релаксации может быть связан и с наличием центров окраски. Магнитный момент электрона, будучи в 10 раз больше магнитного момента ядра, создает около себя большие переменные магнитные поля и вызывает быструю релаксацию ядерного спина у рядом расположенных ядер. Переменное поле обусловлено малым временем спин-решеточной релаксации электрона в изоляторах (Г] электрона а 10 — 10 сек) за счет спин-орбитальной связи электрона с решеткой (раздел П1,А, 2). Ядра, удаленные на 10 или более ангстрем от электронного спина, мало подвергаются действию его магнитного поля, так как оно уменьшается с расстоянием пропорционально 1/гЗ. Однако и эти ядра в присутствии электронного спина релаксируют быстрее за счет диффузии ядерного спина. Ядра, удаленные от неспаренного электрона, являются горячими в том смысле, что в присутствии сильного радиочастотного поля они окажутся дальше от термического равновесия, чем ядерные спины, близкие к примесному центру, и, следовательно, суммарная спиновая поляризация будет смещена к примесному центру за счет диполь-дипольного взаимодействия при одновременных спиновых переходах между одинаковыми спинами и без изменения суммарной энергии. Скорость такой диффузии спинов пропорциональна 1/Т2. Количественное выражение для времени ядерной релаксации, включающее величины концентрации примеси, времени релаксации электронного спина и времени ядерной спин-спиновой релаксации было получено Ху-цишвили [57] достаточно строгим способом для малых концентраций примеси. Несколько сот частей парамагнитных примесей на миллион могут дать времена релаксации в пределах от 10- до 10"3 сек при комнатной температуре. [c.26]

    В спектрах соединений, содержащих неэквивалентные протоны (или другие ядра), часто наблюдается дополнительное расщепление линий. Например, в спектре этанола, снятом при высоком разрешении, каждая компонента обладает тонкой структурой (рис. 50, б). Расщепление имеет порядок 10 гц. Этот эффект объясняют возможностью непрямого взаимодействия ядерных спинов через электроны в молекуле магнитный момент ядра со спином стремится ориентировать снины расположенных поблизости электронов, которые в свою очередь ориентируют спины других электронов, а следовательно, и снины других ядер. Энергии спинового взаимодействия, характеризуемые константой спин-спиновой связи 7, приводят к расщеплению резонансных линий. Нанример, спины протонов группы СНг в R H2OH могут взаимодействовать со спином протона группы ОН (рис. 53). Имеются три возможные конфигурации СНг-грунпы, обозначаемые f f, f или f и j , которые приводят к расщеплению резонансной линии протона группы ОН на три компоненты, расположенные на расстоянии / гц. Средняя компонента наиболее сильная, поскольку статистические веса этих трех конфигураций относятся как 1 2 1. [c.230]

    Методом лазерной масс-спектрометрии исследован изотопный состав легких элементов в речной раковине Мидии . Обнаружено существенное изменение изотопного состава элементов С, О, S, К, С1, Са в наружном и внутреннем слоях раковины. Рассмотрены основные ядерные характеристики исследованных изотопов — спин и магнитный момент ядра, энергия связи нейтрона в ядре, вид ядер. Установлена корреляция между энергией связи нейтронов в ядрах изотопов и аномальным фракционированием изотопов легких элементов в биологическом объекте. Качественно, наблюдаемые в эксперименте, изотопные аномалии объяснены с помощью ядерио-спинового изотопного эффекта. Ил. 4. Табл. 1. Библ, 19 назв. [c.90]

    Возникающие в жидкостях флуктуирующие локальные магнитные поля усредняются из-за относительно свободного движени я молекул. Поэтому непосредственное взаимодействие магнитных моментов ядер в жидкости невозможно (хотя в кристаллах, где усредненные повремени локальные поля велики, этот процесс доминирует в формировании спектра ЯМР). Следовательно, в жидкостях или растворах влияние мгновенных спиновых состояний передается от одного ядра к другому через систему валентных электронов, образующих химическую связь. У данной ковалентной связи суммарный спиновый магнитный момент электронов равен нулю, так как электронные спины спарены. Однако ядерный магнитный момент вызывает небольшую магнитную поляризацию электронов, образующих связь, кото- [c.79]


Смотреть страницы где упоминается термин Спиновый магнитный момент ядра: [c.110]    [c.81]    [c.58]    [c.172]    [c.730]    [c.272]    [c.393]    [c.44]    [c.61]    [c.427]    [c.119]   
Начала органической химии Книга первая (1969) -- [ c.596 ]

Начала органической химии Кн 1 Издание 2 (1975) -- [ c.557 ]




ПОИСК





Смотрите так же термины и статьи:

Магнитный момент

Магнитный спиновая



© 2025 chem21.info Реклама на сайте