Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кулонометрический

    Для кулонометрического титрования в качестве электролизера применяют ячейку (рис. 2.34), состоящую из двух изолированных камер, а при инструментальном методе индикации — из трех камер. Одна из них — генерационная I — представляет собой стеклянный сосуд с пришлифованной крышкой, в отверстие которой вставляют электроды и один конец электролитического ключа (соединительный мостик — U-образная стеклянная трубка, наполненная соответствующим раствором электролита), который обеспечивает электрический контакт между двумя камерами. Вторая электродная камера И — обычный стакан с раствором индифферентного электролита, в который помещают вспомогательный электрод и второй конец соединительного мостика. В третью электродную камеру П1, заполненную насыщенным раствором КС1, помещают электрод сравнения. Если необходимо провести анализ в инертной атмосфере, через исследуе- [c.164]


    Кулонометрический анализ обладает рядом существенных достоинств по сравнению с другими физико-химическими методами анализа надежное определение как малых, так и больших количеств вещества с высокой точностью и воспроизводимостью (погрешность 0,05—0,01%), отсутствие первичных стандартов, возможность использования малоустойчивых реагентов, быстрота. Потенциостатическая кулонометрия отличается, кроме того, высокой селективностью. [c.162]

    Экспрессный анализ концентраций токсичных газов и паров в воздухе с помощью индикаторных трубок. прост и надежен, дает достаточно точные результаты и продолжается от 2 до 10 мин. В производствах аммиака для экспрессного анализа воздуха применяют приборы УГ-2, ГХ-4, ФЛП-2.1, Атмосфера-Г , ЭА-0201. ( омо-щью прибора УГ-2 определяют содержание в воздухе сероводорода, окиси углерода, метилового спирта, аммиака и др. Газоопределитель химический ГХ-4 служит для определения содержания окиси углерода, сероводорода, сернистого ангидрида и окислов азота. Присутствие сероводорода определяют также переносным индикатором ФЛП-2.1 и кулонометрическим газоанализатором [c.117]

    Современные кулонометрические приборы включают все необходимые узлы, позволяющие проводить анализ как методом кулонометрического титрования, так и методом потенциостатиче-ской кулонометрии. К таким приборам относится хроноамперо-метрическая система СХА-1,1. В СХА входит программное устройство, задающее напряжение на электродах, потенциостат для поддержания электрических режимов на электродах, интегратор тока для измерения количества электричества и потенциометр для фиксирования конечной точки титрования. [c.165]

    Изобразить графически кривую кулонометрического титрования в виде зависимости потенциала индикаторного электрода (мВ) от времени электролиза (с), а также дифференциальную кривую А / А/—по которой находят конечную точку титрования. [c.166]

    В зависимости от происходящих в растворе электрохимических процессов различают прямую кулонометрию и косвенную (кулонометрическое титрование). [c.162]

    Выполнение работ по кулонометрическому титрованию с потенциометрической индикацией конечной точки титрования проводит в следующем порядке. [c.165]

    В кулонометрическом титровании ток электролиза /э берут достаточно большой для сокращения продолжительности анализа, поэтому он оказывается обычно больше предельного тока определяемого вещества / пр. Но ток электролиза должен быть меньше предельного тока вспомогательного реагента /"пр (рис. 2.32), так как иначе идут побочные электрохимические реакции (например, окисление или восстановление воды) и, следовательно, не достигается 100%-ная эффективность тока. [c.163]


    Вынуть и ополоснуть дистиллированной водой электролитические ключи. Снять ячейку со столика мешалки, вынуть крышку с электродами, промыть их дистиллированной водой. Повторить кулонометрическое титрование 3—5 раз. [c.166]

    После окончания работы на кулонометрической установке выключить приборы. [c.166]

    Записать в рабочий журнал методику кулонометрического титрования, уравнения реакций, расчетные формулы. Полученные результаты титрования внести в следующую таблицу  [c.166]

    Выполнение работ по кулонометрическому титрованию с амперометрической индикацией конечной точки титрования с двумя [c.166]

    Изобразить графически кривую кулонометрического титрования в виде зависимости тока в индикационной цепи (мкА) от времени электролиза (с). Точка перегиба на кривой соответствует конечной точке титрования. [c.167]

    Кулонометрическая установка с потенциометрической индикацией конечной точки титрования. [c.167]

    Определение Си + основано на обратном кулонометрическом титровании Ь, выделившегося в результате следующей реакции  [c.169]

    Аликвотную порцию полученного раствора 10 мл вносят в кулонометрическую ячейку, добавляют 10 мл раствора КВг, опускают генераторный и два индикаторных электрода, на которые подается поляризующее напряжение А = 200 мВ. Титрование ведут при силе тока 5 мА. Выполнение — см. работу 1 данного раздела. [c.171]

    Выполнение работы. Исследуемый раствор разбавляют дистиллированной водой до метки и перемещивают. Переносят пипеткой 10 мл раствора в кулонометрическую ячейку, приливают 10 мл раствора К1 (в случае титрования генерированным Ь) или 10 мл раствора КВг (в случае титрования генерированным Вгг) и опускают генераторный и индикаторный электроды. Титрование ведут при значении тока 10 мА. Ход анализа — см. работу 1 данного раздела. [c.172]

    Выполнение работы. Исследуемый раствор разбавляют дистиллированной водой в мерной колбе до метки и перемешивают. Переносят пипеткой 10 мл в кулонометрическую ячейку, добавляют 15 мл раствора индифферентного электролита, опускают генераторный и индикаторный электроды. Титрование ведут ири значении тока 5 мА, Выполнение — см. работу 1 данного раздела. [c.173]

    Выполнение работы. Исследуемый раствор разбавляют дистиллированной водой в мерной колбе до метки и перемешивают. Переносят пипеткой 10 мл в кулонометрическую ячейку, [c.173]

    Кулонометрическое титрование в аппаратурном оформлении сложнее, чем титрование с индикаторами или потенциометрическое титрование. Поэтому кулонометрия не находит щирокс-го применения в практике обычного химического анализа. Однако она используется в тех случаях, когда бывает необходимо определить микроколичества растворенных веществ, а также при проведении автоматического титрования. Приготовлен. и использование очень разбавленных титрованных растворов для объемного определения малых количеств растворенных веществ связано со значительными ошибками и неудобствами в работе. При кулонометрическом титровании необходимость применения таких титрованных растворов отпадает, так как определяемое вещество либо подвергается превращению непосредственно на электроде, J ибo титруется реагентом, генерируемым на одном из электродов в самой анализируемой пробе. В каждом из этих двух случаев определение ведется по израсходованному количеству электричества, измерение которого даже в малых дозах можно проводить с большой точностью. [c.286]

    Из металлов первой электрохимической группы наиболее полно изучена платина, хотя из-за высокой чувствительности ее водородного потенциала к примесям полученные данные не отличаются хорошей воспроизводимостью. Н( сомненно, что в области положительных потенциалов (не очень удаленных от обратимого потенциала водородного электрода) на поверхности платины всегда присутствует адсорбированный водород. Это установлено измерением мкости, а также другими методами. Так, количество адсорбированного водорода можно найти для каждого значения потенциала при помощи кривых заряжения, т. е. кривых, передающих изменение потенциала электрода с количеством подведенного электричества чли (при постоянной силе тока) с течением времени. При таком кулонометрическом определении количества водорода (или иного электрохимически активного вещества) необходимо, чтобы его выделение (или растворение) совершалось со 100%-ным выходом по току. Все возможные побочные реакции — электровосстановление или выделение кислорода, катодное восстановление или анодное окисление органических веществ и других примесей — должны быть полностью исключены. Этого можно достичь двумя методами. В первом из ннх сила накладываемого на ячейку тока настолько велика, что значительно превосходит предельные токи восстановления и окисления примесей их вредное влияние поэтому не проявляется. Заряжение электрода проводят с большой скоростью, а кривую заряжения регистрируют автомати- [c.414]

    К первой группе относятся потенциометрический метод (изменение окислительно-восстановительного потенциала раствора электролита, омывающего один из электродов ячейки, обусловленное реакцией с участием определяемого компонента газовой смеси и зависящее от его концентрации мерой концентрации является изменение э. д. с. ячейки), амперо метрический метод (в деполяризационном его варианте используется зависимость силы диффузионного тока, возникающего в поляризованной ячейке под деполяризующим действием определяемого компонента, от концентрации этого компонента газовой смеси) и кулонометрический метод (тот же амперометрический метод, но осуществляемый в услопиях количественного проведения электрохимической реакции перевода определяемого вещества газовой смеси в другую форму или другое соединение мерой концентрации является количество израсходованного на реакцию электричества или, при непрерывном стабилизированном подводе контролируемой газовой смеси, ток во внешней цепи ячейки). Кулонометрические ЭХ-газоанализаторы обычно выпускаются как автоматические титрометры непрерывного действия с так называемой электрохимической компенсацией. Мерой концентрации определяемого компонента газовой смеси служит в этих приборах ток электролиза, выделяющий из раствора электролита (в котором растворяется определяемый газ) титрант в сте-хиометрических количествах, что обеспечивается электрометрическим измерением точки эквивалентности и автоматическим управлением током электролиза. [c.612]


    ЭХ-методы широко применяются прежде всего для определения кислорода в различных, часто сложных газовых смесях, причем гальванический и частично кулонометрический методы используются для измерения субмикро- и микроконцентраций, Этими методами определяется и кислород, растворенный в воде, бстальные методы применяются для измерения малых, средних и больших (До 100 объемн.%) концентраций. Для определения микро- и малых концентраций сернистых и сероорганических соедииений применяются кулонометрические автоматические титрометры. ЭХ-методы применяют также для определения микроконцентраций паров воды. Их используют и для определения других газов и паров, в частности горючих, по остатку кислорода после сжигания. ЭХ-методы, особенно гальванический и деполяризационный, являются ограниченно избирательными. [c.612]

    Кулонометрический анализ может быть выполнен при постоянной величине тока (амперостатическая кулонометрия) или при контролируемом потенциале (потенциостатическая кулонометрия). Оба метода, имеющие одну и ту же принципиальную основу, различаются аппаратурным оформлением и техникой определения. [c.162]

    Необходимое условие использования той или иной электрохимической реакции в кулонометрическом анализе состоит в том, чтобы практически все расходуемое количество электричества затрачивалось на превращение только определяемого вещества, т. е. побочные электрохимические реакции должны отсутствовать. Иначе говоря, электрохимическое превращение вещества должно протекать со 1007о-ным выходом по току (или 100%-ной эффективностью тока). [c.162]

    Кулонометрическое титрование основано на электрогенерации титранта, который реагирует количественно с определяемым веществом, Так как кулонометрическое титрование проводят при постоянном значении тока, то количество электричества рассчитывают по формуле  [c.162]

    Е ыполнение работы. Исследуемый раствор КМПО4 или К2СГ2О7 в мерной колбе разбавляют дистиллированной водой до метки и перемешивают. Переносят пипеткой 10 мл раствора в кулонометрическую ячейку, приливают 10 мл вспомогательного реагента и опускают генераторный и индикаторный электроды. Титрование ведут при силе тока 5 мА. Конечную точку титрования определяют потенциометрическим методом. Выполнение работы см. работу 1 данного раздела. [c.169]

    По результатам титрования строят кривую кулонометрического титрования и определяют конечную точку титрования. Расчет количества КМПО4 или К2СГ2О7 проводят по формуле, указанной в работе 1. [c.169]

    Выполнение работы. Предварительно проводят кулонометрическое титрование раствора МагЗгОз, для чего 10 мл раствора переносят в ячейку, приливают 10 мл вспомогательного реагента, 7 капель крахмала и опускают в ячейку генераторный электрод, Титрование ведут при силе тока 5 мА до появления синей окраски крахмала. Фиксируют время генерации /]. Исследуемый раствор Си + доводят в мерной колбе до метки дистиллированной водой, перемешивают, переносят пипеткой 5 мл в ячейку и приливают 10 мл раствора К1- Затем добавляют пипеткой 10 мл раствора МагЗдОз и 1 капель крахмала. Далее проводят титро-зание так же, как при определении тиосульфата натрия. Фиксируют время генерации /г. [c.170]

    Идентификация отдельных групп соединений возможна с помощью специальных детекторов, имеющих повыщенную чувствительность к данным соединениям. Так, кулонометрический детектор, действие которого основано на титровании продуктов сгорания элюата электролитическим бромом, может использоваться для анализа сернистых соединений. Электронозахватыый детектор имеет высокую чувствительность к фосфорным, галогенсодержащим соединеииям, обладающим бо/ ьшим сродством к электрону. [c.86]


Библиография для Кулонометрический: [c.184]    [c.184]   
Смотреть страницы где упоминается термин Кулонометрический: [c.107]    [c.285]    [c.285]    [c.286]    [c.186]    [c.144]    [c.473]    [c.162]    [c.162]    [c.163]    [c.163]    [c.164]    [c.164]   
Электроосаждение металлических покрытий (1985) -- [ c.273 ]




ПОИСК







© 2025 chem21.info Реклама на сайте