Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Реагенты вспомогательные

    Исследования по переработке высокомолекулярных парафиновых углеводородов (за исключением производства жирных кислот окислением парафинов) начались лишь сравнительно недавно. Стимулом для этих работ явилось главным образом стремление организовать производство мыл, сульфонатов, алкилсульфатов и других веществ, которые играют исключительно важную, но часто недооцениваемую роль в про мышленности моющих средств, эмульгаторов, вспомогательных мате риалов для текстильной промышленности, флотационных реагентов Это стремление диктовалось желанием отказаться от использо вания жиров в области промышленного органического синтеза с тем чтобы полностью направить их на производство пищевых про дуктов. [c.8]


    При кулонометрическом титровании вводят специальный реагент (вспомогательный) и электролитически получают из него вещество (промежуточный реагент), которое служит кулонометрическим титрантом, т. е. способно вступать в химическую реакцию с анализируемым компонентом. [c.416]

    При кулонометрическом титровании вводят специальный реагент (вспомогательный) и электролитически получают из него вещество (промежуточный реагент), которое служит кулоно- [c.430]

    С чем связано такое стремление Во-первых, с желанием уйти из той области концентраций, для которых не существует достаточно удачных и общепризнанных методов математического описания коэффициентов активности реагирующих частиц. Потому столь притягательными для экспериментатора оказываются дебаевская область концентраций при исследовании растворов электролитов или близкие к ней области, где для описания коэффициентов активности часто считают допустимыми использование уравнений Дэвиса, Васильева и других модификаций уравнения Дебая — Хюккеля. Правда, большинство исследований комплексообразования в растворах электролитов в настоящее время осуществляют в концентрированных растворах. Но эти растворы концентрированы не по самим реагентам, а по вспомогательной соли, химическими реакциями с ионами которой на практике считают возможным пренебречь. Стремление работать на таких инертных солевых фонах основывают на допущении, что на коэффициенты активности реагентов существенное влияние оказывает лишь солевой фон , и при изменении концентраций самих реагентов в изучаемой области состава систем изменения коэффициентов активности можно считать пренебрежимо малыми. Но пределы допустимости такого приближения требуют экспериментального выяснения. По крайней мере общепризнанным является стремление поддерживать концентрации реагентов на уровне, значительно более низком, чем концентрация солевого фона , хотя насколько более низком — вопрос часто остается открытым. [c.165]

    Электроэнергия технологическая. Пар. .......... Сырье, реагенты, вспомогательные риалы. ......... 46 13 38 5 [c.418]

    Прибор (рис. 8) поставляют в комплекте с интегратором, ЭВМ, микровесами и соответствующими реагентами, вспомогательными узлами и т. п. [c.39]

    Относительные изменения концентраций веществ А и В Относительное изменение концентрации Н2 в 2 или (ед )з — относительные изменения на этапах 2 и 3 диффузии Относительное изменение концентрации Н2О (вц д)2 и (Вд о з — относительные изменения на этапах 2 и 3 диффузии Относительное изменение концентрации продукта Относительное изменение концентрации реагента Вспомогательная переменная отношение я/яо (гл. 13) [c.543]


    Расходные показатели, а также структура себестоимости производства высших жирных спиртов приведена в табл. 50. В основу проведенных расчетов положены проектные материалы с корректировкой их, основанной на результатах опытных работ Шебекинского комбината и исследованиях ВНИИСИНЖа. При калькулировании затрат на производство спиртов исходное сырье (жидкие парафины) оценивалось по их себестоимости, химические реагенты и вспомогательные материалы — по отпускным ценам. [c.166]

    Замена периодических процессов непрерывными не всегда оказывается целесообразной, а иногда настолько трудно практически реализуется, что от нее приходится отказываться. Традиционно принято считать непрерывные процессы более прогрессивными главным образом благодаря более высокой производительности оборудования. Действительно, при организации производства по периодическому способу коэффициент использования оборудования снижается из-за простоев, а также из-за наличия вспомогательных операций, требующих затрат времени (загрузки реагентов, нагревания и охлаждения реакционной массы, выгрузки продукта, очистки аппаратов и т. д.). [c.522]

    При транспортировке, перекачке и хранении все топлива соприкасаются с металлами. Основная аппаратура для транспортировки и хранения нефтепродуктов изготовляется из сталей различных марок мелкие детали, некоторое вспомогательное оборудование и системы питания двигателей выполняются из сплавов, в состав которых входят и цветные металлы. Металлы могут содержаться в бензине в растворенном состоянии, правда в очень небольшом количестве. Металл может попасть в бензин непосредственно из нефти при ее переработке и от контакта с металлической аппаратурой и тарой. Остатки химических реагентов, применяемых при вторичных процессах переработки, также могут быть причиной появления в бензинах следов металлов. И, наконец, некоторые металлы, связанные в металлоорганических соединениях, специально добавляют в топлива для улучшения их эксплуатационных свойств. [c.243]

    Теоретически рассмотрены силы, действующие на частицу, соприкасающуюся со стенкой поры в слое вспомогательного вещества, в частности сила электростатического взаимодействия, обусловленная наличием заряда на границе раздела фаз [383]. На лабораторном фильтре выполнено исследование о влиянии физико-химических факторов на процесс разделения золя иодида серебра с использованием предварительно нанесенного слоя перлита или кизельгура знак заряда частиц золя регулируется избыточным количеством одного из реагентов, образующих золь. Установлено, что при размере частиц меньше размера пор знак заряда на поверхности частиц, противоположный знаку заряда на поверхности пор, способствует задерживанию частиц в пористом слое при этом отношение размера пор к размеру частиц может достигать 7. Отмечено, что увеличение вязкости жидкой фазы суспензии вызывает более глубокое проникание частиц в слой. [c.360]

    Установка снабжена некоторыми вспомогательными устройствами и системами. Для отвода образующейся при просеивании порошка в вибросите пыли к блоку дозирования подключают специальный вентилятор, который устанавливают за пределами основного помещения. Для предотвращения слипания реагента и осаждения его на дне емкости смешения последнюю оборудуют байпасной циркуляционной линией. [c.134]

    Технологический комплекс оснащают узлами приема—запуска разделителей (шаровых или поршневых), дозаторами для ингибиторов гидратообразования и коррозии, устанавливаемыми в расчетных точках технологической схемы, средствами учета расхода реагента, системами контроля, управления и связи, а также вспомогательными средствами. [c.167]

    Роль катализа в технологической, схеме производства, конечно, не исчерпывается приведенной выше типичной схемой (см. стр. 12). Некоторые производства включают ряд последовательных каталитических процессов. Примером может служить получение водорода из метана, включающее две или три стадии каталитической конверсии основного реагента, а также очистку газов от вредных примесей путем каталитического превращения их в вещества, неактивные или легко выделяемые из реакционной смеси. В других случаях каталитические процессы являются вспомогательными операциями (например, процессы каталитической очистки отходящих газов). Естественно, что такие производства не относятся к числу каталитических, хотя и включают каталитические процессы. [c.16]

    П. Меркурометрические УФ - газоанализаторы — по поглощению ультрафиолетовой радиации парами ртути — веществом, наиболее интенсивно поглощающим ультрафиолетовые лучи. Пары ртути выделяются из окиси ртути (вспомогательного реагента) в итоге воздействия на нее определяемого газо- или парообразного компонента смеси, который не поглощает этих лучей, но обладает способностью восстанавливать окись ртути до ртути. [c.608]


    Недостаток процесса — значительный расход вспомогательных реагентов, щелочи и кислоты. Разработан вариант метода, предусматривающий смешение [c.95]

    Регенерация реагентов. Часто в систему необходимо вводить вспомогательные исходные вещества, например, когда новый ход процесса будет более выгодным, чем при непосредственном взаимодействии основных исходных веществ, или даже единственно возможным. В этом случае нужно так организовать производственный цикл, чтобы вспомогательное исходное вещество можно было регенерировать. После регенерации это вещество возвращается в цикл, и его расход ограничивается только потерями. Такой метод широко используется в химической технологии. Отметим, что он отличается от рециркуляции реагента, олисанной на стр. 356. Обычно возвращаемое в цикл вспомогательное йсходное вещество регенерируется в результате химического превращения, а не выделяется из смеси физическими методами. Примером может служить использование концентрированной гидроокиси натрия для разложения боксита в производстве окиси алюминия методом Байера, сохранение в цикле окислов азота при башенном способе получения серной кислоты или введение в цикл аммиака при производстве соды методом Сольвея. В последнем случае процесс не может проводиться при, непосредственном взаимодействии основных исходных веществ по уравнению [c.377]

    Если определяемое вещество А электроактивно, на генераторном электроде (например, катоде) происходит восстановление как вспомогательного реагента 2, так и определяемого вещества А  [c.163]

    В кулонометрическом титровании ток электролиза /э берут достаточно большой для сокращения продолжительности анализа, поэтому он оказывается обычно больше предельного тока определяемого вещества / пр. Но ток электролиза должен быть меньше предельного тока вспомогательного реагента /"пр (рис. 2.32), так как иначе идут побочные электрохимические реакции (например, окисление или восстановление воды) и, следовательно, не достигается 100%-ная эффективность тока. [c.163]

    Обычно, чтобы обеспечить 100%-ный выход по току вспомогательный реагент берут в 1000-кратном избытке по отношению к определяемому веществу. Вспомогательный реагент служит своего рода окислительно-восстановительным буфером, препятствующим смещению электродного потенциала до таких значений, при которых возможны другие нежелательные электрохимические процессы. [c.163]

    Раствор К1, 0,2 М (вспомогательный реагент). [c.170]

    Описанные виды транспортирования материалов осуществляются между аппаратами в пределах химико-технологических систем или между ними и являются составляющими единого технологического процесса, поэтому в дальнейшем эти виды транспортных операций целесообразно рассматривать в составе технологической подсистемы ГАПС. В химических производствах имеется также внутрицеховой и внутризаводской транспорт, назпачеине первого — подача реагентов и всномогательных материалов к аииаратам, назначение второго — подача со склада в цех исходных реагентов, вспомогательных матерпалов н отправление на склад расфасованной и упакованной продукции в ГАПС к перемещаемым объектам в цехе, а также между цехами и складом относятся аппаратурные модули. [c.54]

    Неорганические соединения, применяемые для обработки буровых растворов, в зависимости от их природы и назначения можно разделить на четыре группы. К первой относятся щелочные реагенты многофункционального действия — едкий натр и кальцинирований сода, имеющие наибольшее распространение. Вторая группа неорганические реагенты полимерного характера— силикаты натрия, хроматы и изополихроматы, конденсированные фосфаты и соединения, близкие к ним. Третья группа включает в себя реагенты вспомогательного назначения известь и другие содержащие ее продукты, хлористый кальций, гипс и некоторые другие. Эти вещества являются более или менее активными коагуляторами глинистых суспензий и применяются Для ингибирования [c.97]

    Характеристика работ. Ведение технологического процесса дегидратации спиртов в соответствии с рабочей инструкцией. Подготовка сырья, реагентов, вспомогательных материалов загрузка их в реакторы при соблюдении постоянного уровня реакционной массы, отгонка образующихся углеводородов и других соединений. Обогрев аппарата подачей горячего масла в змеевик и рубащку реактора. Выгрузка продукта из реактора, растворение, очистка и передача на другие участкие производства. Слив ртути из испарителя и контактных аппаратов, фильтрация и очистка от механических примесей, заливка в ртутные баллоны и аппараты наблюдение за работой форсунок ртутной и азотной печи, накалом ртутного испарителя. Дробление катализатора и загрузка в контактный аппарат промывка осущителей дозировка углекислоты в систему слив дегидратационной воды в канализацию. Пуск и остановка оборудования. Обслуживание аппаратов дегидратации, испарителей, перегревателей, конденсаторов, отстойников, смо-лорастворителей, ртутной и азотной печи, осушительных колонн, насосов, коммуникаций, контрольно-измерительных приборов и другого оборудования. Регулирование процесса по показаниям контрольно-измерительных приборов и результатам анализов. Расчет загрузки сырья, количества воды для растворения продукта. Отбор проб для анализа. Учет сырья, вспомогательных материалов и готовой продукции. Ведение записи в производственном журнале. Подготовка оборудования к ремонту, прием из ремонта. [c.34]

    Известно, что составы азеотропов зависят от условий существования системы, в частности от давления. При изменении давления в многокомпонентных системах происходит изменение положения границ областей ректификации. На основе этого явления разработан принцип перераспределения полей концентрации между областями ректификации [29], который может использоваться для разделения многокомпонентных азеотропных смесей ректификацией без введения каких-либо вспомогательных веществ. Это же явление, как следует из рассмотренных примеров I и III, может использоваться для увеличения предельнд возможных степеней превращений реагентов, образующих азеотропные смеси, в реакционно-ректификационном процессе. В самом деле, если, например, при повышенном (пониженном), по сравнению с атмосферным, рабочем давлении в аппарате состав азеотропа (рис, 40,6) будет соответствовать более высокому содержанию компонента С, то линия предельных составов псевдоисходных смесей ВМ (рис. 40, в) займет положение, соответствующее более высокой предельной конверсии компонента А, [c.208]

    Аналитический непрерывнодействуюший газоанализатор Сиг-ма-1 позволяет определить присутствующие в воздухе аммиаке, окислы азота, хлористый водород. Работа газоанализатора основана на переводе контролируемого компонента в аэрозольное состояние при его взаимодействий со вспомогательным реагентом и последующем детектировании аэрозолей в ионизационной камере. [c.263]

    Силикат-глыба, гидроокись алюминия, сернокислый глинозем и сульфат магния являются тем1Е основными веществами, которые непосредственно входят в состав катализаторов и адсорбентов в виде окиси кремния, окиси алюминия п окиси магния. Содержание их в сухих катализаторах и адсорбентах составляет 97—98% и более. Серная кислота, едкий натр, минеральные масла, хлористый натрий, аммиак и другие реагенты являются материалал1и вспомогательными, но крайне необходимыми в различных стадиях производства. [c.26]

    При одновременном протекании в пористом зерне катализатора тшических реакций и процессов массо- и теплопереноса в нем возникают градиенты температур и концентраций, т. е. концентрации реагентов и температура смеси изменяются по глубине зерна и отличаются от их значений на поверхности. Скорость же превращения в аппарате обычно определяют при значениях переменных на поверхности катализатора. А для учета внутри-диффузионных эффектов вводится вспомогательная функция т], которая носит название фактора эффективности, или степени использования внутренней поверхности зерна катализатора, и определяется отношением [c.158]

    Аппараты периодического действия характеризуются тем, что транспортные операции (загрузка реагентов и выгрузка продуктов) и основные технологические операции разделены во иремеии. Таким образом, основной технологический ироцесс в аппарате периодического действия прерывается вспомогательными операциями. [c.20]

    Модели вспомогательных операций в аппаратах периодического действия. Операции загрузки реагентов и выгрузки продуктов. Продолжительность большинства вспомогательны.ч оиераций (загрузка и выгрузка, иагреванне и охлаждение) зависит от объема перерабаттлваемой масстл. [c.104]

    Для стадии, имеющей наибольитую относительную частоту, формируют аппаратурный модуль, руководствуясь общими принципами инженерно-аппаратурного оформления технологического процесса. Например, для стадии химического синтеза определяющими выбор аппаратурного оформления признаками являются агрегатные состояния исходных реагентов и продуктов реакции, значения режимных параметров процесса (температуры, давления), физико-химические свойства среды, выделение газофазных продуктов реакции и т. п. В отсутствие или при невозможности сформировать математические модели эта информация является определяющей при выборе типов основного и вспомогательного оборудования. [c.227]

    Колориметрическая реакция проводится 1) в жидкой фазе, образуемой вспомогательным реагентом, сквозь который циклически или непрерывно пропускается контролируемый компонент (фотоколориметрически й, ФК -метод, характеризуемый применимостью закона Буге — Ламберта — Бера), или 2) в пропитанном вспомогательным реагентом слое бумажной или текстильной ленты, поверхность которой с одной стороны омывается смесью газов и паров, содержащей контролируемый компонент (фотометрический ленточный, ФЛ-метод, к которому неприложим вышеупомянутый закон). [c.609]

    Определение кислот основано на электрогенерации ионов ОН из Н2О на платиновом катоде и последующем их взаимодействии с ионами Н3О+. В данном случае сам растворитель является вспомогательным реагентом, при этом протекают следующие реакции  [c.167]

    Раствор Ре(КН1) (504)2-12НгО, 0.2 Л1 в 2 М растворе НоЗО, (вспомогательный реагент). [c.169]

    Е ыполнение работы. Исследуемый раствор КМПО4 или К2СГ2О7 в мерной колбе разбавляют дистиллированной водой до метки и перемешивают. Переносят пипеткой 10 мл раствора в кулонометрическую ячейку, приливают 10 мл вспомогательного реагента и опускают генераторный и индикаторный электроды. Титрование ведут при силе тока 5 мА. Конечную точку титрования определяют потенциометрическим методом. Выполнение работы см. работу 1 данного раздела. [c.169]

    Выполнение работы. Предварительно проводят кулонометрическое титрование раствора МагЗгОз, для чего 10 мл раствора переносят в ячейку, приливают 10 мл вспомогательного реагента, 7 капель крахмала и опускают в ячейку генераторный электрод, Титрование ведут при силе тока 5 мА до появления синей окраски крахмала. Фиксируют время генерации /]. Исследуемый раствор Си + доводят в мерной колбе до метки дистиллированной водой, перемешивают, переносят пипеткой 5 мл в ячейку и приливают 10 мл раствора К1- Затем добавляют пипеткой 10 мл раствора МагЗдОз и 1 капель крахмала. Далее проводят титро-зание так же, как при определении тиосульфата натрия. Фиксируют время генерации /г. [c.170]


Смотреть страницы где упоминается термин Реагенты вспомогательные: [c.316]    [c.39]    [c.48]    [c.305]    [c.124]    [c.21]    [c.49]    [c.49]    [c.30]    [c.28]    [c.163]    [c.169]   
Справочник по обогащению руд основные процессы Издание 2 (1983) -- [ c.259 ]

Справочник по обогащению руд основные процессы Издание 2 (1983) -- [ c.259 ]




ПОИСК







© 2025 chem21.info Реклама на сайте