Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Параметр основности Льюиса

    Реакции могут протекать в поверхностных слоях графита, и роль внедренной кислоты состоит в создании (регулировании) положительного заряда на его углеродных сетках. Если молекулы субстрата внедряются в незаполненное межплоскостное пространство графита, то реакция будет протекать без непосредственного контакта молекул субстрата с молекулами внедренных кислот, и направление реакции определяется в основном пространственными затруднениями, создаваемыми углеродными слоями графита. При локализации процесса в заполненном кислотами межплоскостном пространстве графита на процесс влияет природа кислоты-катализатора и вышеуказанные пространственные затруднения. Каталитическими центрами могут быть и внедренные кислоты, расположенные по краям кристаллов графита. В этом случае роль пространственных затруднений, создаваемых сеткой графита, должна быть незначительной. Самый неспецифический путь каталитического действия заключается в вымывании внедренных веществ в раствор и протекании реакции вне графита. Другими словами, слоистые соединения графита являются внутренними дозаторами катализатора. С точки зрения возбуждения реакций полимеризации мономера предпочтительны умеренные температуры процесса (-20°С), усиливающие влияние и природы внедренной кислоты, и параметров пространственной сетки графита. На это указывают зависимости эффективности катализатора от природы кислоты Льюиса и неактивность индивидуально взятых графита или кислоты [154, 155]. Низкие, как правило, скорости превращений определяют недостаточную технологичность катализаторов - соединений включения в графит, хотя у них есть и очевидные достоинства стабильность на воздухе, устойчивость к гидролизу, селективность в некоторых процессах. [c.60]


    Каталитический крекинг протекает на кислотных катализаторах, содержащих сильные центры Бренстеда и Льюиса. Он сопровождается многочисленными процессами скелетной изомеризацией, циклизацией, ароматизацией, диспропорционированием, дегидрированием и др. Каждый из этих процессов осуществляется только на центрах соответствующей природы и силы. Слабые центры катализируют такие реакции, как цис- и транс-изомеризация, сильные — изомеризацию двойной связи, сопровождаемую скелетной изомеризацией, крекингом и коксообразованием на центрах увеличивающейся силы. Дальнейшие осложнения вносят размер, кривизна и конфигурация пор, присутствующих в кристаллических катализаторах. Учет значимости этих параметров является новым в области гетерогенного катализа, хотя сейчас уже известно, что эти факторы существенно влия ют на селективность и включены в перечень основных свойств промышленных гетерогенных катализаторов. [c.134]

    На рис. 7-3 показана превосходная корреляция между донорными числами и параметром основности Льюиса В, который учитывает вызываемый растворителем сдвиг частоты колебаний связи О—D в мономерном дейте-рометаноле [14, 69]  [c.167]

    При использовании взвешенного разностного метода существенным является определение необходимой степени аппроксимации, т. е. отыскание значения п, достаточно малого для обеспечения легкости вычислений и достаточно большого для получения необходимой точности. Естественно предположить, что для изучения устойчивости системы, описываемой моделью частицы катализатора, достаточно довольно малого значения п. Куо и Амундсон (1969 г.) в результате тщательного исследования получили профили четырех стационарных состояний с помощью метода Галеркина. В любом случае заключение об устойчивости системы было корректным уже при п = 1 и ни в одном из случаев не потребовалось значения /г > 3, чтобы получить собственные значения с точностью до трех значащих цифр. Для изучения той же системы Макговин (1969 г.) также использовал метод Галеркина, но он в основном исследовал влияние изменений числа Льюиса. В качестве примера был выбран случай с тремя стационарными состояниями, приведенный на рис. У1-10. Эти профили оказались справедливыми для любых чисел Льюиса при следующих значениях остальных параметров  [c.174]

    С целью накопления данных, необходимых при конструировании и эксплуатации камер сгорания реактивных двигателей, в лаборатории Льюиса NA A изучается влияние основных факторов на зажигание и горение топливо-воздушных смесей. Одной из частей этой программы являются исследования параметров, влияющих на энергию искрового разряда, необходимую для зажигания однородной топливо-воздушной смеси. Исследования были начаты с целью разрещения проблем, связанных с запуском авиационных реактивных двигателей наземного запуска двигателей в холодных климатических условиях, запуска вспомогательных двигателей в условиях высотного полета и повторного запуска двигателей в случае срыва пламени также в условиях высотного полета. Уже в начале осуществления этой программы исследований задачи, связанные с зажиганием, в значительной степени облегчились благодаря удачным конструкциям и расположению различных частей зажигающего устройства и разработке высокоэнергетических зажигающих устройств. Тем не менее продолжается всестороннее исследование процесса зажигания, так как необходимо сконструировать более легкие, эффективные и надежные системы зажигания. [c.32]


    Обсуждая крекинг индивидуальных парафинов, мы рассмотрели различные гипотезы относительно начальной стадии процесса. В случае крекинга газойлей сложность возрастала из-за того, что это сырье содержит компоненты различной молекулярной массы. В результате основное обсуждение крекинга газойлей сосредоточилось на поверхностных характеристиках общей конверсии или суммарной селективности. Несомненно, что если бы были установлены кинетические параметры крекинга газойлей, можно было бы получить большой объем информации, изучая их изменение в зависимости от составов сырья и катализатора. Корма и Войцеховский [43] попытались объяснить влияние активных центров различных типов при каталитическом крекинге газойля, сопоставляя кинетические параметры, полученные с использованием модели ВПП, с экспериментальными данными по крекингу газойля на двух различных цеолитных катализаторах. Так как в обоих случаях применялось одно и то же сырье, ясно, что все различия в параметрах (табл. 6.1) должны быть связаны со свойствами катализаторов и, в первую очередь, с природой их активных центров. На основании данных ИК-спектроскопии и изучения крекинга кумола, как модельной реакции, обнаружено, что цеолит HY содержит больше центров Бренстеда и меньше Льюиса, чем LaY [58]. С другой стороны, исследование распределения кислотной силы методом Бенеши позволило установить, что число активных центров с рК<6,8 больше па цеолите НУ, тогда как ЬаУ содержит больше сильных кислотных центров с рК<1,5 [43]. Это те самые сильные центры, которым приписывают основную активность в ка-(галитическом крекинге парафинов [59]. В свете этих данных можно представить следующую схему крекинга обычного парафинис-froro газойля. [c.132]

    На основании выдвинутых Досталем основных положений [4] и указаний Уолла [5] на доступные измерению параметры в 1944 г. одновременно и независимо появились три теоретические работы Алфрея и Голдфин-гера [6], Майо и Льюиса [2 и Уолла [7]. Эти авторы высказали следующие предположения  [c.461]


Смотреть страницы где упоминается термин Параметр основности Льюиса: [c.213]    [c.454]    [c.548]    [c.323]    [c.50]    [c.202]    [c.776]   
Неформальная кинетика (1985) -- [ c.167 , c.175 ]




ПОИСК





Смотрите так же термины и статьи:

Льюис



© 2025 chem21.info Реклама на сайте