Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Цикл Карно, идеальный

Рис. 2. Обратный цикл Карно идеальный (а) и с реальными процессами теплообмена (б) Рис. 2. <a href="/info/534355">Обратный цикл Карно</a> идеальный (а) и с <a href="/info/362589">реальными процессами</a> теплообмена (б)

    Второе начало термодинамики говорит о том, что самопроизвольно теплота передается от тела с более высокой температурой к телу с более низкой температурой и никогда наоборот. Получение же холода связано как раз с передачей теплоты от менее нагретого тела к более нагретому, т. е. с переносом теплоты с низшего температурного уровня на высший. Такой перенос возможен только с затратой работы. В качестве переносчика теплоты с низшего температурного уровня на высший используется специальное рабочее вещество-хладагент, совершающее круговой процесс. Идеальным круговым процессом является обращенный цикл Карно (рис. 39). [c.121]

    Цикл Карно — это идеальный цикл. Его невозможно в точности осуществить в реальной тепловой машине, потому что нельзя обеспечить изотермический подвод п отвод теплоты, а также расширение и сжатие рабочего тела без теплообмена с окружающей средой. Тем не менее исследования Карно имеют большое значение. Они показали, в частности, что для повышения экономичности тепловых двигателей надо осуществлять подвод теплоты к рабочему телу при возможно более высокой температуре, а отвод — при возможно более низкой. [c.32]

    Отношение A/Ql показывает, какая часть теплоты, поглощенной газом за один цикл, превращается в работу. Оно называется коэффициентом полезного действия (к. п. д.) цикла. В данном случае—это к. п. д. цикла Карно с идеальным газом, рассматриваемого как тепловая машина. [c.44]

    При проведении каждого отдельного процесса равновесного цикла Карно с идеальным газом в обратном направлении не только рабочее тело совершает цикл, но и источники теплоты (нагреватель и холодильник) остаются практически в исходном состоянии (если они очень велики по сравнению с рабочим телом). Поэтому мы называем цикл Карно с идеальным газом обратимым циклом. [c.45]

    Цикл Карно для идеального газа является идеальной, не осуществимой в практике схемой тепловой (холодильной) машины. В технической термодинамике рассматриваются другие циклы, более близкие к реальным процессам в тепловых машинах, и вычисляются коэффициенты полезного действия этих циклов. [c.46]

    Цикл Карно (стр. 43) является простейшим круговым процессом. Он был рассмотрен как сочетание процессов сжатия и расширения идеального газа, дающее механическую работу. [c.80]


    В таком цикле Карно гальванический элемент при известной температуре поглощает теплоту нагревателя и производит электрическую работу. Последняя может быть затрачена на поднятие тяжести и таким образом сохранена как потенциальная механическая энергия. Заставляя затем элемент работать в условия идеальной тепловой изоляции, можно адиабатно понизить (или г.о-высить) его температуру, после чего, используя сохраненную работу, можно провести химическую реакцию в элементе в обратном направлении, при ином значении электродвижущей силы, а затем адиабатно довести элемент до первоначальной температуры. [c.81]

    Коэффициент полезного действия такого цикла, работающего равновесно, должен быть тем же, что и у цикла Карно, работающего с идеальным газом. Важно только, чтобы система обменивалась теплотой с окружающей средой при двух температурах, одинаковых в обоих циклах. [c.81]

    Холодильный коэффициент идеальной машины, соответствующий минимальным затратам энергии, рассчитывается для обратного цикла Карно, построенного на средних температурах хладоносителя и охлаждающей воды  [c.183]

    Для данной установки полезный эффект заключается в отводе теплового потока Q от охлаждаемого объекта при средней температуре Т,. и передаче его окружающей среде с температурой Т . Количественная мера этого эффекта в единицах эксергии представляет собой минимальную работу идеального холодильного устройства, работающего по циклу Карно с предельными температурами Тох и 7 , и рассчитывается по формуле [c.183]

    Следовательно, величина работы, производимая тепловой машиной, работающей по идеальному циклу Карно, зависит от разности температур нагревателя Тх и холодильника Гг и соотношения объемов рабочего тела в системе. При этом можно отметить, что изменение внутренней энергии Ai/ осталось постоянным, а работа была произведена только за счет частичного расходования энергии нагревателя на изменение состояния рабочего тела. [c.61]

    При начальной температуре 373 К 1 моль кислорода совершает цикл в идеальной машине Карно. Сначала он расширяется изотермически до двукратного объема, затем расширяется адиабатически до трехкратного объема (по сравнению с первоначальным), затем сжимается изотермически до такого объема, чтобы в результате последуюш,его адиабатического сжатия вернуться к первоначальному состоянию. Приняв 7 = Ср Су = 1,4, рассчитайте работу, совершенную газом в каждой части цикла работу, произведенную за счет теплоты в цикле, и КПД цикла. [c.73]

    Для идеального холодильного цикла (обращенного цикла Карно) [c.147]

    Одной из причин большой затраты работы в реальном цикле по сравнению с идеальным (цикл Карно) является необратимость процесса, связанная с применением редукционного вентиля. Для [c.260]

    Чтобы получить математическое выражение второго начала термодинамики, следует более детально рассмотреть действия идеальной тепловой машины. Идеальной тепловой машиной мы называем такую машину, которая работала бы без трения и без потерь теплоты. В ней рабочим телом является идеальный газ. Работа машины основана на принципе обратимого термодинамического цикла, называемого циклом Карно. [c.66]

    Все эти выводы получены, как уже подчеркивалось, для идеального газа в качестве рабочего тела. Следовательно, коэффициент полезного действия цикла Карно есть максимальный коэффициент полезного действия тепловых машин, работающих циклами, и невозможно построить такую машину, которая, получив Q джоулей теплоты, превратила бы в работу больше энергии, чем riQ. [c.69]

    Вычислим количества теплоты Р] и Рг — взятое и отданное в цикле Карно — для случая, когда работающее тело — идеальный газ. На основании (11.65) и (И.66) можно записать  [c.48]

    Отсюда легко получается экономический коэффициент для цикла Карно, работающее тело в котором есть идеальный газ  [c.49]

    Идеи Карно были развиты математически Э. Клапейроном (1834), который впервые предложил графическое изображение известного цикла Карно, состоящего из двух изотерм и двух адиабат идеального газа (см. рис. 16). [c.88]

    Следовательно, идеально обратимым является такой гипотетический процесс, в котором трение, лучеиспускание, электросопротивление и все другие аналогичные источники рассеяния энергии отсутствуют. Он может рассматриваться как предел реально воспроизводимого процесса, подойти к которому на практике мы можем как угодно близко. Представим себе процесс, происходящий таким образом, что на каждой стадии бесконечно малое изменение внешних условий будет вызывать обращение хода процесса или, иначе говоря, на каждой ступени процесс сбалансирован. Очевидно, система может быть обращена в свое первоначальное состояние бесконечно малыми изменениями внешних условий. В этом смысле говорят, что обратимый процесс осуществим на идеальном опыте . С таким идеальным опытом мы уже имели дело при описании цикла Карно, который весь состоит из процессов, осуществимых только в нашем воображении. [c.94]


    Рабочим телом в этом цикле является 1 моль идеального газа. Все процессы, составляющие цикл Карно, обратимы. Рассмотрим их последовательно. [c.58]

    Отсюда следует, что 01 = АО- , Q и А можно измерить экспериментально. Далее, выбрав две фиксированные температуры (точки плавления льда при нормальном давлении и кипения воды), между которыми проводится цикл Карно, и приняв, что Д0=1ОО, получим абсолютную термодинамическую шкалу, которая совпадает со шкалой идеального газа. [c.61]

    Эту функцию ввел Р. Клаузиус (1865), назвал энтропией и обозначил буквой 5. Математическое выражение энтропии было получено им из цикла Карно, на котором основана работа тепловой машины. Графическое изображение циклических процессов представлено на рис. 2.1. Рабочее тело (1 моль идеального газа) получает от нагревателя с температурой Т некоторое количество теплоты Q и, расширяясь изотермически (кривая АВ), совершает работу Далее газ расширяется адиабатно, без подвода теплоты (кривая ВС) и его температура падает до Т-2. Совершаемая работа в этом процессе W2  [c.36]

    Согласно Карно для периодического действия тепловой машины, т. е. превращения неограниченного количества теплоты в работу, необходимо по меньшей мере два тепловых резервуара с различающимися температурами — нагреватель и холодильник. Идеи Карно были восприняты и развиты математически Э. Клапейроном (1834), которым было также впервые предложено графическое изображение известного цикла Карно, состоящего из двух изотерм и двух адиабат идеального газа (рис. П1.3). [c.67]

    Этот цикл называют идеальной тепловой машиной. Коэффициент полезного действия (к. п. д.) цикла Карно и вообще наибольший возможный к. п. д. тепловой машины независимо от рода работающего тела можно выразить соотношением [c.67]

    Почему в формулировках Клаузиуса и Кельвина речь идет о круговом процессе — действуя посредством кругового процесса Потому что, например, при однократном расширении идеального газа по изотерме 1—2 (рис. П1.3) в принципе возможно поЛное превращение теплоты в работу [вспомните соотношение (П.33), где Qt= Ат. Но нельзя бесконечно расширять газ, и для повторения операции получения второй и т. д. порций работ необходимо будет его сжать. Если сжимать газ при той же температуре Ti, т. е. по изотерме 2—1 (рис. П1.3), не получится выигрыша работы. Поэтому в цикле Карно газ из состояния 2 расширяют адиабатически до состояния 3, снижая его температуру до T a. Сжатие при T a требует затраты меньшей работы [формула (П.33)1, а поэтому в целом и получается выигрыш работы, равный площади цикла 1 2 3 4. [c.69]

    Вид функции (IV, 1) можно определить и другим путем. В соответствии с теоремой Карно — Клаузиуса, достаточно провести обратимый цикл Карно с любым веществом, для которого известно уравнение состояния. Это дает возможность выразить процессы, составляющие цикл, через термодинамические параметры состояния, придав правой части (IV, 1) конкретное выражение. В качестве рабочего тела остановимся на идеальном газе, так как его свойства известны из молекулярно-кинетической теории, Для идеального газа PV = RT поэтому (см. рис. 21) [c.79]

    При начальной температуре 348,2 К 1 моль Н2 совершает цикл в идеальной машине Карно сначала он расширяется до двойного объема изотермически, затем расширяется до учетверенного первоначального объема, чтобы при последующем адиабатическом сжатии, вернуться в исходное положение. Вычислить работу каждой части цикла и к. п. д. цикла (у=1,4). [c.94]

    Согласно теореме Карно замена идеального газа любым другим веществом не приведет к изменению к. п. д. цикла Карно, замена же цикла Карно любым другим циклом приводит к меньшему к. п. д. (теорема Клаузиуса—Карно). Таким образом, даже в случае идеальной тепловой машины превращение теплоты в работу не может быть полным. [c.92]

    Уравнение (VI.4) и связанное с ним (VI.5) получены из (VI.3) для идеального, обратимого цикла Карно. В необратимом цикле к. п. д. т] меньше, чем в обратимом цикле, т. е. [c.92]

    Реальные холодильные циклы. При рассмотрении холодильного цикла Карно (идеального цикла) не обязательно обращаться к деталям, связанным с механизмом процесса. Действительно, громадным преимуществом этого метода анализа является его простота, обусловленная тем, что он не зависит от механизма. В действительности не существует процесса охлаждения, равноценного идеальному процессу Карно. Следующей нашей задачей будет рассмотрение реальных циклов и определение степени их отклонения от идеального. Реальные холодильные циклы отличаются от идеального цикла Карно двумя оиювными признаками. Во-первых, сам цикл, даже если механизм для его совершения является идеальным, имеет определенные, присущие ему необратимые эффекты, которые делают его менез производи- [c.488]

    Так как функция ф (Т , Т ) не зависит от природы рабочего тела машины, то мы можем найти вид этой функции, используя юбой частный случай, например такой, когда рабочим телом обратимого цикла Карно является идеальный газ. [c.83]

    Теоретический цикл идеальной машины — цикл Карно — в координатах PV состоит из двух адиабат и двух изотерм. На фиг. 1 представлена диаграмма кругового цикла Карно. От точки 1 до точки 2 расширение газа происходит при Ti = onst по изотерме с подводом тепла от точки 2 до точки 3 — расширение газа по адиабате от точки 3 до точки 4 — сжатие газа по изотерме с отводом тепла при Ti = onst от точки 4 до точки 1 — сжатие газа по адиабате. [c.14]

    В любом тепловом двигателе при помощи любого теплового цикла, даже с помощью идеального теплового цикла Карно (состоящего из двух изотерм и двух адиабат) теплота не может быть полностью превращена в работу. Часть тепла в цикле не используется, переходя с высшего температурного уровня на низший и, таким образом, в определенной степени обесцени вается. [c.86]

    Можно представить себе, однлко, идеальный цикл сжижения газа, в котором затрачиваемая работа будет меньше, чем в цикле Карно (L < LJ. [c.648]

    Результаты расчетов работы (в квт-ч1кг), затрачиваемой на сжижение I к2 газа по идеальному циклу 11 д, см. уравнение (ХУП,6)1 и циклу Карно ( .J при Т1 300 "К и — 9,81 10 н/м (1 ат) приведены ниже  [c.649]

    Для получения низких температур может быть использован идеальный (обр 1тимый) цикл Стирлинга, термодинамически эквивалентный циклу Карно. Этот цикл состоит из диух изотерм и двух изохор (рис. ХУП-19) и положен в основу холодильной машины фирмы Филипс , схема устройства и работы которой показаны на рис. XVI1-20. [c.675]

    Все термодинамические способы повышения степени рекуперации тепловой энергии в узлах теплообмена и ТС в целом определяются вторым законом термодинамики [7,20-24] идельаные обратимые процессы протекают без изменения энтропии, в то время как в реальных, необратимых процессах, она возрастает. Наиболее отчетливо это видно из анализа идеального цикла Карно, в котором возможно максимальное превращение имеющегося тепла в работу. Если обозначить количество тепла при температуре потока Т через Ц, а -температура окружающей среды, то теоретически максимально возможное количество работы А, получаемое в цикле Карно, равно Q (Т -Т )/Т . Величина TQ/TJ - часть тепла, которое рассеивается в атмосферу (рис. I). Зависимость цикла Карно от температуры =(Т]--Тд)/Т представлена на рис. 2. Из изложенного вытекает несколько важных термодинамических предпосылок, учет которых при синтезе оптимальных ресурсосберегающих ТС позволяет обеспечивать их высокую эффективность. [c.38]

    Первое начало термодинамики применимо к описанию как обратимых, так и необратимых процессов. В некоторых случаях можно воздействовать на систему таким образом, чтобы необратимый термодинамический процесс протекал обратимым путем. Для этого, как правило, систему необходимо снабжать специальным устройством для совершения работы. Для пояснения этого утверждения удобно сослаться на пример передачи теплоты от более нагретого тела к менее нагретому. Если оба тела привести в соприкосновение, то будет происходить самопроизвольный процесс передачи теплоты от одного тела к другому до тех пор, пока температуры обоих тел не сравняются. Этот процесс носит необратимый характер, так как проведение процесса в обратном направлении без совершения работы невозможно. Тем не менее процесс передачи теплоты можно сделать обратимым, если для этого использовать тепловую машину, например на основе цикла Карно, с идеальным газом. В этом случае система наряду с передачей теплоты будет совершать определенную работу, которая в обратном процессе может быть использована для передачи теплоты от менее нафетого тела к более нагретому [c.18]

    Рассмотрим две машины, работающие по циклу Карно при температурах нагревателя 7, и теплоприемника Га (ТхУТ ). Пусть в первой машине рабочим телом является идеальный газ, а во второй — любое другое вещество (рис. 2.15). Подберем условия так, чтобы Qi=Ql.  [c.59]


Смотреть страницы где упоминается термин Цикл Карно, идеальный: [c.10]    [c.60]    [c.89]    [c.92]    [c.219]    [c.14]    [c.49]    [c.219]   
Основные процессы и аппараты химической технологии Издание 4 (низкое качество) (1948) -- [ c.650 ]




ПОИСК





Смотрите так же термины и статьи:

Карно

Карно идеальный

Карно цикла Карно



© 2025 chem21.info Реклама на сайте