Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Насосы в производстве для расплава Znl

    Сухое мыло может быть получено на установку готовым или приготовлено непосредственно в процессе производства смазки, В последнем случае омыляемое сырье и водный раствор щелочи (суспензия) в необходимых количествах смешиваются в попеременно действующих реакторах, снабженных высокооборотным перемешивающим устройством и рубашкой для подачи теплоносителя. После завершения реакции омыления или нейтрализации (для жирных кислот) водная пульпа мыла поступает на сушку в вакуумный барабанный аппарат непрерывного действия. Сухое мыло эрлифтом подается в бункер, а затем уже весами 5 дозируется в один из двух параллельно установленных реакторов 1, куда предварительно дозировочным насосом 2 закачивается примерно 2/3 необходимого количества нефтяного масла. После тщательного перемешивания смесь насосом 2 прокачивается через электрический трубчатый нагреватель 8, где нагревается до 200— 210 °С и далее смешивается с остатком масла и масляным раствором присадок в смесителе 9. Затем смесь поступает в деаэратор 10, в циркуляционном контуре которого установлен гомогенизирующий клапан 6. В деаэраторе из мыльно-масляного расплава удаляется воздух, после чего расплав направляется для охлаждения в скребковый холодильник 12. Охлажденная смазка поступает в сборник-накопитель 16, а некондиционный продукт через сборник-накопитель 15 направляется на переработку или откачивается с установки, [c.103]


    ПО Трубопроводам или перевозится в цистернах с установки его синтеза на производство полимера и хранится несколько суток в резервуарах. Установлено, что в расплавленном продукте с течением времени увеличивается кислотное число, становится заметным пожелтение. Для термостабилизации расплавленного диметилтерефталата рекомендуют [14] добавлять насыщенный одноосновный спирт с числом углеродны х атомов от 1 до 4. Особенно пригодным оказался метиловый спирт в количестве 0,1—1,0 %(масс.). Введение метилового спирта в расплавленный диметилтерефталат проводят в потоке азота или двуокиси углерода, насыщенных метиловым спиртом при 40— 50 °С, и непрерывно барботируют его через расплав. В большие резервуары метиловый спирт вводят с помощью насоса, а потери на его постепенное испарение периодически возмещают. [c.17]

    В производстве многотоннажных продуктов с целью интенсификации работы плавильных котлов едкий натр плавят в отдельных котлах, а затем полученный жидкий расплав подают в котлы для щелочного плавления ароматических сульфокислот. Котел для плавки едкого натра (рис. 37) имеет сферические днище и крышку. В крышке установлен погружной центробежный насос 2 для перекачивания расплава. С целью удлинения срока службы погружных насосов их часто подвешивают на специальных тельферах и опускают в плавильный котел только на время перекачивания расплава. Котел смонтирован в кладке печи 1 и обогревается топочными газами. Предварительно раздробленный или чешуйчатый едкий натр загружается в аппарат по течке 4 через штуцер 3 из вагонеток 5 при помощи подъемника 6. Срок службы плавильных котлов существенно зависит от равномерности их обогрева, поэтому во избежание местных перегревов предусматривается тщательное перемешивание топочных газов. Продолжительность срока службы котлов, изготовленных из низколегированных чугунов, — 2—3 года. Котлы, применяемые для процессов щелочного плавления, имеют различную конструкцию в зависимости от консистенции реакционной массы. [c.132]

    При получении штапельного волокна, когда необходимо подавать к фильере значительно больше расплава, чем при формовании текстильной нити, рекомендуется расплавлять полиэфир в экструдере, который обогревается электрообогревателями по зонам. Выдавливаемый экструдером расплав подается к прядильным насоси-кам для нескольких прядильных мест. При этой схеме подачи расплава отпадает необходимость устанавливать плавильные решетки над каждым прядильным местом кроме того, не ограничивается количество полимера, подаваемого в прядильный насосик. Соответственно может быть увеличено число отверстий в фильере и значительно повышена производительность каждого прядильного места. Такую схему подачи полимера к прядильному насосику (при периодическом способе производства) целесообразно использовать и при формовании штапельного волокна из расплавов других синтетических полимеров (полиамидов, полиолефинов). [c.143]


    При использовании червячных машин в качестве экструдеров и растворителей их объемная производительность обычно не превышает 5—10% от максимальной, т. е. они работают в режиме, близком к режиму закрытого выхода. Такое ограничение производительности необходимо, чтобы время пребывания продукта в аппарате было достаточным для завершения расплавления или растворения полимера, а достигается это путем установки после экструдера или растворителя дозирующего насоса. В аналогичных условиях работают и червячные насосы, с помощью которых выгружается расплав из вакуумных ступеней в производстве полиамидных волокон. [c.179]

    При производстве лент (рис. 1) расплав под давлением инертного газа направляют непосредственно после полимеризации (до или после фильтрации) в дозировочный насос этот насос проталкивает расплав через отверстие трубки, соответствующее определенному профилю ленты далее лента направляется на профилированные канавки колеса, вращающегося с постоянной скоростью и снабженного охлаждающим и обогревательным устройством. Согласно патентным данным, полузатвердевшую ленту передают на второе приемное колесо, где она дополнительно охлаждается и принимает окончательную форму, пригодную для дальнейшего формования. Второе колесо не имеет канавок и также может быть снабжено охлаждающим или нагревательным устройством. Готовую ленту направляют через один или несколько роликов на мотовило, на которое она наматывается в виде рулона. [c.274]

    Проведены опытно-промышленные испытания производства битумов в колонне в присутствии хлорида железа [99]. Кристаллогидрат хлорида железа РеСЦ-бИзО предварительно расплавляли при температуре 40—80 °С в барабане, обогреваемом водяным паром. Затем расплав разбавляли водой и 80 /о-й раствор хлорида железа плунжерным насосом подавали в окислительную колонну. Расход раствора — 0,1% (масс.) на сырье температура окисления составляла 265—270 °С, расход воздуха 2700 м /ч. В качестве сырья использовали гудрон с температурой размягчения 30—31°С. Опыты показали, что при получение битума с температурой размягчения 47—50 °С производительность увеличивается с 30 до 40 м /ч, а содержание кислорода в газах окисления снижается с 8 до 7% (об.). При сохранении одинаковой производительности 35 м /ч добавка хлорида железа позволяет повысить температуру размягчения битума с 43 до 54 °С, содержание кислорода в газах при этом также снижается с 8 до 7% (об.). Таким образом, применение хлорида железа способствует повышению степени использования кислорода воздуха и ускоряет процесс окисления. Однако, поскольку проблемы коррозии не решены, положительное заключение о целесообразности каталитического окисления не может быть сделано. [c.73]

    На рис. 103 приведена принципиальная технологическая схема установки для производства комплексной кальциевой смазки типа униол. В смеситель 5 загружают сырьевые компоненты (нефтяное масло, фракцию синтетических жирных кислот и уксуснук> кислоту). При нецрерывном перемешивании -смесь нагревают до 90 °С и при этой температуре подают 25—30%-ное известковое молоко Са(0Н)2. Насосом 6 однородная суспензия подается в реактор 11, в котором -за счет циркуляции теплоносцтеля поддерживается температура 120—140 °С. Дисперсия мыльного загустителя в масле прокачивается насосом 12 через трубчатый подогреватель 13. где при температуре около 180 °С полностью завершаются процессы омыления и диспергирования загустителя в масле. Далее расплав поступает в испарительную колонну 14, где в вакууме (39,9—66,5 кПа) удаляется основная часть воды. Обезвоживание можно проводить в одном или двух испарителях, как показано на рисунке. В испарителе 18 дисперсия подается с температурой 180—200 °С и доиспарение влаги осуществляется при более глубоком вакууме. [c.374]

    В некоторых конверторах циркуляция расплава солей через межтрубное пространство осуществляется насосом. При этом горячий расплав можно направлять в котлы-утилизаторы и расходовать тепло реакции для получения водяного пара, который используют в самом производстве фталевого ангидрида. По расчету количество пара, получаемого в процессе окисления нафталина (6 т1год), вполне достаточно для обеспечения нужд всего цеха фталевого ангидрида. Конвертор такой конструкции показан на рис. 15. Равномерное распределение исходной паро-газовой смеси по сечению конвертора достигается при помощи перфорированной тарелки 5, расположенной под входным штуцером. Температура в [c.54]

    Упаренная сточная вода из емкости 6 насосом 5 подается в циклонный реактор I, где осуществляется окисление органических примесей сточной воды и образование расплава сульфата натрия. В образующемся расплаве кроме сульфата натрия содержится и карбонат натрия, образующийся при окислении натриевых солей карбоновых кислот. Расплав, выводимый из циклонного реактора, подвергается грануляции в кристаллизаторе 10, о.хлаждаемом водой. Из кристаллизатора продукт в виде пластинок транспортером И подается в вагонетку 12 и затем отправляется на склад, где в случае необходимости может подвергаться дроблению. В соответствии с составом сточной воды получаемый продукт имеет следующий состав 90—91% Na2S04, 7—8% ЫагСОз, около 1,5% Na l и 0,5% других нерастворимых минеральных примесей. Такой продукт удовлетворяет требованиям ряда потребителей [366], в частности крупного потребителя — стекольной промышленности. Наличие соды в продукте повышает эффективность его использования в производстве стекла. [c.254]


    Наибольщее распространение получила нитрит-нитратная смесь, состоящая из 40% NaN02, 7% NaNOa, и 53% КНОз, имеющая температуру плавления 142 . Так, например, нитрит-нитратная смесь в производстве фталевого ангидрида выполняет роль теплоносителя, который циркулирует с помощью погружного центробежного насоса между конвертором и котлом-утилизатором, работающим при температурах 430—410°. Реакционное тепло, получаемое в конверторе, используется для получения водяного пара в котле-утилизаторе. Расплав солей требует герметичности всей системы, из которой должен полностью удаляться воздух во избежание окисления. Лучшей мерой защиты расплава солей является присутствие в системе азота или водяногО пара. [c.46]


Смотреть страницы где упоминается термин Насосы в производстве для расплава Znl: [c.185]   
Коррозия и защита химической аппаратуры Том 6 (1972) -- [ c.2 , c.172 ]




ПОИСК





Смотрите так же термины и статьи:

Насосы в производстве



© 2025 chem21.info Реклама на сайте