Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Тионин потенциал

    Отыскивая аналогию предполагаемой первичной фотохимической реакции в области обычной фотохимии, мы находим ее в некоторых явлениях, описанных в главе IV. Там указывалось, что поглощение света неорганическими ионами в растворе часто ведет к окислению воды, даже если этот эффект остается скрытым вследствие большой скорости обратных реакций. В растворах некоторых красителей подобный фотохимический перенос электронов происходит в присутствии добавочных восстановителей, например нонов закисного железа, а иногда в их отсутствие. В системе тионин—ион закисного железа обратная реакция так медленна, что смесь успевает потерять на свету свою окраску (как описывалось в главе IV), несмотря на то, что окислительный потенциал тионина на несколько десятых вольта более положителен, чем у иона окисного железа. Эта наиболее известная фотохимическая [c.156]


    Это означает, что для того, чтобы решить AG > О или AG < О, систему краситель — восстановитель, (или окислитель) необходимо рассматривать при определенном значении pH. На рис., VII. 7 на примере некоторых красителей и восстановителей приведены зависимости редокс-потенциалов от pH. Из рисунка видно, что красители должны восстанавливаться водородом в присутствии подходящего катализатора, так как Ен,/н < Ed- Метиленовый синий и Тионин имеют высокие значения редокс-потенциалов, и поэтому восстановление начинается или ускоряется в присутствии слабых восстановителей, которые имеют r < Ег,. Такой случай относится к реакциям второго типа, например восстановление Метиленового синего аскорбиновой кислотой при pH ниже 4 [220]. Энергия поглощенного света должна уменьшать AG . В нейтральных растворах реакция второго типа переходит в реакцию первого типа вследствие более высокого значения редокс-потенциала аскорбиновой кислоты ( r > Ed). Однако при поглощении видимого света редокс-потенциал красителя возрастает и становится большим, чем редокс-потенциал аскорбиновой кислоты. В результате этого происходит быстрое фотовосстановление красителя. Условие AG > О должно приводить к медленной обратной реакции. Прежде всего окисление лейкоформы Метиленового синего наблюдается в присутствии кислорода воздуха. Этот процесс происходит за короткое время и может быть ускорен под действием ближнего УФ-облучения, поглощаемого лейкоформой красителя. [c.398]

    ОТНОСИТСЯ К реакциям первого типа. Ионы имеют более высокий редокс-потенциал, чем Тионин. При pH 1 AG — 2F(0,75— [c.399]

    Подробное исследование окислительно-восстановительных систем, образованных метиленовым синим и тионином и их лейкоформами, было выполнено Кларком в 1925 г. [19]. Первая из названных систем изучалась также Мейером и Тредвеллом [26]. Точность измерений в щелочной области снижается вследствие неустойчивости красителей при больших pH. В кислой и слабокислой областях (до pH = 6) изменение ионной силы до 0,08 не влияет на величину окислительного потенциала [36]. Потенциометрические и спектрофотометрические исследования установили образование семихинонов метиленового синего и тионина в очень кислых растворах, а для тионина — и в щелочных [26, 37, 38]. [c.106]

    Например, при pH 3 нормальный потенциал системы тионин— лейкотионин приблизительно равен —0,3 в, а потенциал системы —Ее " приблизительно равен —0,75 в. Тем не менее на свету ионы Ре++ окисляются ионами тионина, и требуется несколько секунд для того, чтобы система вернулась к равновесию в темноте. Медленность обратной реакции следует отнести за счет своеобразного отношения между Ш к F в реакции (4.17). Нормальные потенциалы показывают, что свободная энергия этой реакции резко положительна, но что ее тепловой эффект, вероятно, отрицателен. Свободные энергии гидрогенизации большинства органических систем, в том числе тионина, менее отрицательны, чем общие энергии таким образом, восстановленное состояние обладает меньшей энтропией. Отношения меняются в случае восстановления ионов трехвалентного железа водородом. Следовательно, обратное направление реакции (4.17) эндотермично и не может происходить с большой скоростью. Это более иди менее случайное обстоятельство и объясняет, почему в системе тионин — железо сдвиг окислительно-восстановительного равновесия на свету, обычно маскируемый обратной реакцией, становится легко наблюдаемым, даже если он кратко-времен. [c.82]


    Выло найдено [238, 246, 258, 259], что концентрация аскорбиновой кислоты в растениях увеличивается при снабжении глюкозой. Условия, косвенно влияющие на образование сахара, например обильное снабжение двуокисью углерода и хорошее освещение, также увеличивали концентрацию аскорбиновой кислоты. Аскорбиновая кислота характерна своей кислотностью и способностью к обратимому окислению. Два атома водорода, отмеченные в формуле звездочками, диссоциируют как ионы Н+ с константой диссоциации, равной 6,2 10- (рК = 4,21). Измерение окислительновосстановительного потенциала дает величину, равную 9,1 10- . Следовательно, в тканях почти вся аскорбиновая кислота должна находиться в виде анионов или металлоорганического комплекса. Большая константа диссоциации на первый взгляд противоречит принятой формуле, так как в ней нет карбоксильной группы. Однако группа —СОН=СОН—СО— имеет, повидимому, кислый характер, сходный с карбоксильной группой (см. [241]). Аскорбиновая кислота имеет величину Х = 0,838 она может окисляться дальше, теряя два или даже четыре водородных атома. В определенном интервале pH такая потеря обратима, особенно поскольку дело касается первой ступени. Эта ступень превращает аскорбиновую кислоту в дегидроаскорбиновую (СеНцОв, Х = 0,75, см. формулу на стр. 281). Делалось много попыток определить окислительно-восстановительный потенциал системы аскорбиновая кислота—дегидроаскорбиновая кислота [222—224, 225, 231, 240]. Эта система электрохимически инертна, и надо добавлять электродные катализаторы , например тионин и метиленовую синь, для того чтобы ускорять установление электродного равновесия [240]. Окислитель (дегидроаскорбиновая кислота) неустойчив в растворе при pH > 5,75 [225, 240]. Поэтому надежные потенциалы можно получить лишь в кислой области. При pH 6 и выше кажущийся нормальный потенциал становится со временем ноложительнее, потому что окислитель постепенно исчезает нз системы. Принимая во внимание эти осложнения, Болл [240] смог вычислить нормальные потенциалы системы аскорбиновая кислота — дегидроаскорбиновая кислота при 30° между pH 1 и 8,6 и подучил значения  [c.282]

    Окислительно-восстановительный потенциал красителя более положителен, чем потенциал восстановителя. Темновая реакция возможна, но скорость ее может быть мала из-за высокой энергии активации. За счет поглощения энергии света активационный барьер преодолевается. Пример восстановление тионина сульфитом или п-пропениланизолом (анетолом). [c.318]

    Чтобы найти отсюда фарадеевский коэффициент, необходимо скорректировать данные с учетом влияния и Сделать это легко, поскольку N J поддается расчету (это проверено на ферри/ферроцианидной системе с платиновым дисковым электродом и платиновым кольцом [8, 10], а можно оценить экстраполяцией экспериментальных данных в область высоких частот, где остальными членами можно пренебречь. Найденный таким способом комплексный фарадеевский коэффициент эффективности можно сравнить с теоретически предсказанным значением. Достоинством этого метода является то, что при соответствующем выборе потенциала кольцевого электрода можно следить либо за реа1ирующим веществом, либо за продуктом реакции. Следовательно, изучая адсорбцию, оба вещества можно определять независимо. Этот подход использован при изучении адсорбции тионина [4] и метилвиологена [6] на платине, а также реакции цитохрома с на модифицированном золотом электроде [12]. [c.198]


Смотреть страницы где упоминается термин Тионин потенциал: [c.289]    [c.152]    [c.399]    [c.97]   
Фотосинтез 1951 (1951) -- [ c.82 ]




ПОИСК





Смотрите так же термины и статьи:

Тионин



© 2025 chem21.info Реклама на сайте