Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Мышьяка сульфид, золь устойчивость

    В пробирку слейте по 4 мл растворов золей гидроксида железа и сульфида мышьяка, полученных в опытах 3 и 4. Почему происходит осаждение обоих коллоидов Напишите формулы выпавших осадков. Какими видами устойчивости обладают коллоидные растворы  [c.102]

    Известно, что гидрофобные (олеофильные) коллоиды в водной среде чувствительны к добавкам электролитов и коагулируют при определенной их концентрации. Из многочисленных экспериментальных данных известно также, что потеря устойчивости гидрофобными коллоидами и их коагуляция обусловливается двумя факторами уменьшением заряда частиц и адсорбцией добавленных электролитов. Влияние обоих этих факторов обычно накладывается одно на другое, но в некоторых благоприятных случаях каждое из них можно обнаружить независимо от другого. Еще в 1921 году Мацуно [104] сравнил коагулирующее действие комплексов кобальта различной валентности по отношению к золю сульфида мышьяка. Оказалось, что пороги коагуляции уменьшаются с увеличением валентности комплексных ионов в соответствии с правилом Шульце — Гарди [105]. Поскольку адсорбируемость этих комплексных ионов почти одна и та же, то, очевидно, различия в порогах коагуляции должны быть обусловлены главным образом различием в величине заряда этих ионов. Фрейндлих и Бирштейн [106] сравнили пороги коагуляции гомологов натриевых солей жирных кислот ( i — Се) по отношению к золю окиси железа, а также алкилзамещенных (Сг С12) аммонийхлоридов по отношению к золю сульфида мышьяка. Они обнаружили, что пороги коагуляции закономерно уменьшаются с увеличением числа атомов углерода в цепях ионов электролитов и что, таким образом, соблюдается правило Траубе [107]. Следовательно, в этом случае полученные результаты определяются в основном различиями в адсорбируемости указанных одновалентных органических электролитов. [c.254]


    Подобно коллоидной частице сульфида мышьяка построены частицы золей металлов и гидроксидов металлов. Некоторые вещества в коллоидной степени дисперсности способны адсорбировать на своей поверхности много молекул растворителя, которые образуют сольватную оболочку (если дисперсионная среда — вода, то гидратную). Сольватные оболочки, так же как и адсорбированные ионы, обусловливают устойчивость коллоидных растворов, так как препятствуют сближению коллоидных частиц. [c.137]

    Было изучено влияние на устойчивость и. коагуляцию золей гидрата окиси железа и сульфида мышьяка адсорбции неионогенных поверхностно-активных веществ, дифильные молекулы которых состоят из неполярного углеводородного радикала и полярной полиоксиэтиленовой цепи. В зависимости от интенсивности взаимодействия поверхности коллоидных частиц с дисперсионной средой влияние неионогенных поверхностно-активных веществ на коллоидные системы оказалось различным даже в качественном отношении. Поверхностно-активные соединения при малых их концентрациях в системе не повышали гидрофильности частиц гидрата окиси железа и уменьшали устойчивость гидрозоля к действию [c.298]

    Фотометрические методы. Ионы многих металлов образуют довольно устойчивые коллоидные сульфиды, которые можно применять для количественного определения S . Описано фотометрирование окрашенных в желтый цвет золей сульфидов кадмия [420, 839] белых — цинка [839], оранжево-желтых — висмута [781, 957, 1013], палладия [1013], мышьяка [758] черных — серебра [504, 895], свинца [137, 139, 198, 442, 1064, 1154, 1424] ртути [1231]. Во многих случаях для стабилизации золей добавляют защитные коллоиды желатин, гуммиарабик, глицерин, поливиниловый спирт. Чаще всего фотометрируют золи серебра, висмута и свинца или сравнивают со стандартами окраску пятен на бумаге, импрегнированной солями этих элементов после обработки ее испытуемым раствором или газовой смесью, содержащей сероводород. [c.118]

    На это указывают также результаты изучения устойчивости золей сульфида мышьяка в присутствии алкиловых эфиров полиэтиленгликоля, содержащих 18 и 98 оксиэтильных групп [309, 310]. Как правило, все производные, отвечающие большей длине оксиэтильной цепи, обладали ярко выраженным стабилизирующим действием. (Прим. ред.) [c.62]

    Явление коагуляции происходит не только при прибавлении к золю электролита, но также при смешивании двух коллоидных растворов, частицы которых имеют противоположные заряды, например при сливании растворов положительного коллоида гидрата окиси железа и отрицательного коллоида сульфида мышьяка. В этом случае противоположно заряженные коллоидные частицы взаимно разряжаются, что влечет за собой нарушение агрегативной устойчивости обоих коллоидов и их совместную седиментацию. Полная коагуляция обоих коллоидов в этом случае будет происходить только при определенных количественных соотношениях компонентов. [c.370]


    Было изучено влияние на устойчивость и коагуляцию золей гидрата окнси железа и сульфида мышьяка адсорбции неионогенных поверхностно-активных веществ, дифильные молекулы которых состоят из неполярного углеводородного радикала и полярной полиоксиэгиленовой цепи. В зависимости от интенсивности взаимоде ствия поверхности коллоидных частиц с дисперсионной средой влияние неиоюгенных поверхностно-активных веществ на коллоидные системы оказалось различным даже в качественном отношении. Поверхностно-активные соединения при малых их концентрациях в системе не повышали гидрофильности частиц гихрата окиси железа и уменьшали устойчивость гидрозоля к действию электролитов. Это, очевидно, связано с промежуточным характером золя Ре(ОН)з, имеющего достаточно гидрофильные частицы. При больших концентрациях иеионогенные поверхностно-активные вещества вызывали коагуляцию золя Ре(ОН)з. [c.298]

    В целом полученные результаты свидетельствуют о том, что вследствие ориентированной адсорбции молекул неионогенных поверхностно-активных веществ происходит модификация поверхности частиц сульфида мышьяка. Типично гидрофобный коллоидный раствор AS2S3 превращается в золь с лиофильными свойствами, агрегативная устойчивость которого обусловлена адсорбциои-ными гидратированными слоями неионогенного стабилизатора, образующимися вокруг частиц дисперсной фазы. Ориентированная адсорбция молекул неионогенных поверхностно-активных веществ на поверхности частиц была установлена экспериментально.  [c.298]

    Коагуляция объясняется нарушением устойчивости коллоидной системы при нейтрализации зарядов коллоидных частиц. Коллоидные частицы золя сульфида мышьяка содержат гидросульфид-ионы, нейтрализуемые соляной кислотой ионы HS нейтрализуются ионами OHJ, образуя молекулы Н2О и H2S. Образовавшиеся электронейтральные частицы начинают слипаться, и золь коагулирует. Аналогично коагулируют золи гидроокисей металлов. Например, для коагуляции положительно заряженного золя Ре (ОН), достаточно нескольких капель аммиака для выделения 2 г Ре(ОН)з из его золя нужно 1 мг NH4OH. Коагулированные осадки увлекают при осаждении ионы электролитов и загрязнены ими. [c.88]

    Примерами гидрофильных золей, теряющих устойчивость лищь в концентрированных растворах электролитов, являются золи серы, оксидов и гидроксидов металлов и других соединений, дисперсная фаза которых сильно гидратирована за счет образования водородных связей с молекулами воды. Исследования стабильности и электрокинетического потенциала ряда гидрофобных золей (галогенидов серебра, сульфидов мышьяка и сурьмы), к которым были добавлены неионогенные поверх-ностно-активные вещества (оксиэтилированные эфиры этиленгликоля), показали, что образовавшиеся при этом дисперсии также представляют собой типичные лиофильные коллоидные растворы. Краснокутская и Сапон обнаружили, что с увеличением содержания ПАВ в растворе устойчивость золей в определенной области концентраций реагента возрастает настолько, что коагуляция наступает только в высококонцентрированных растворах солей. Таким образом, гидратированные молекулы неионных ПАВ, адсорбируясь на гидрофобных коллоидных частицах, превращают их в гидрофильные. При действии электролитов с однозарядными противоионами очень малые добавки ПАВ вызывают эффект сенсибилизации. При коагуляции высокоустойчивых коллоидных растворов, стабилизированных ПАВ, заряд противоионов, как у всех гидрофильных золей, не имеет существенного значения. Гидрофилизи-рованный золь становится чувствительным к совместному действию дегидратирующих агентов (например, этилового спирта или повышенных температур) и небольших количеств солей. Концентрация ПАВ, вызывающая превращение гидрофобного золя в гидрофильный, снижается с увеличением длины оксиэтиленовой цепи и углеводородного радикала молекулы ПАВ, но не связана с критической концентрацией мицеллообразования поверхностно-активного соединения. [c.23]

    На важную роль фактора сольватации в механизме стабилизации лиофильных (лиофилизированных) дисперсий указывают данные о температурной зависимости устойчивости этих систем. Как показано Бараном и Соломенцевой, для гидрофильного золя оксида железа(III) характерно скачкообразное изменение порогов коагуляции электролитов при увеличении температуры (рис. 1.4). Ими обнаружено, что агрегатив-ная устойчивость золей золота, иодида серебра, сульфидов мышьяка и сурьмы, содержащих адсорбированный гидрофильный полимер (желатину, полиэтиленоксид, поливиниловый спирт и др.), с ростом темпе- [c.23]

    Коагуляция сама по себе протекает очень медленно. Это явление обусловливается тем, что коагуляции противодействуют электрические заряды коллоидных частиц, вызывающие отталкивание частиц друг от друга и мешающие им сблизиться настолько, чтобы произошло взаимное притяжение. Вот почему некоторые золи не коагулируют и при долгом хранении. Устойчивость золей понижается в результате нейтрализации электрического заряда, что происходит при добавлении в раствор электролитов. При этом коллоидные частицы, несущие электрический заряд, адсорбируют противоположно заряженные ионы электролита. В качественном анализе для этих целей применяют большей частью кислоты или аммониевые соли. На коагуляцию сильно влияет валентность катиона или аниона прибавляемого электролита. Чем больше валентность ионов, тем сильнее действие электролита. Так, например, при коагулировании отрицательно заряженного коллоида—сульфида мышьяка—наиболее слабое действие оказывает ЫН4С1, более сильно действует ВаС1а и еще лучше—АЮд. В случае положительно заряженного коллоида (например, гидроокиси алюминия) ХШ4С1 действует слабее, чем (ЫН4)2504. [c.197]


    Если электролит в коллоидный раствор вводят не сразу, а небольшими порциями через определенные промежутки времени, наблюдается явление привыкания. Привыканием называется повышение устойчивости золя к коагулируюшему действию электролита при уменьшении скорости его поступления. Так, например, коагуляция золя мышьяка(1П) сульфида с отрицательно заряженными частицами происходит, когда к 20 мл коллоидного раствора быстро добавляют 32 капли раствора бария хлорида. Если же каждый день добавлять только по четыре капли, то для коагуляции необходимо уже 56 капель того же раствора. [c.515]

    Электрический заряд. Коллоидные частицы, диспергированные в воде, несут на своей поверхности характерные для каждых из них электрические заряды. Золь гидроокиси трехвалентного железа, например, песет положительный заряд, тогда как золи сульфида мышьяка и золота имеют отрицательный заряд. Все коллоидные частицы в золе несут одноименные заряды и поэтому отталкиваются одна от другой, увеличивая тем самым устойчивость коллоидной дисперсии. В процессе образования коллоидной системы частицы приобретают электрический заряд в результате адсорбции ими ионов под действием статического электричества или путем ионизации самих коллоидных частиц. В зависимости от заряда иона, адсорбируюш,егося на поверхности коллоидной частицы, эта частица приобретает тот или иной заряд. Адсорбция ионов па поверхпости частицы может ослабляться или усиливаться под действием статического электричества, в резуль- [c.136]


Смотреть страницы где упоминается термин Мышьяка сульфид, золь устойчивость: [c.260]    [c.298]    [c.231]    [c.260]    [c.298]    [c.231]    [c.363]   
Курс коллоидной химии (1976) -- [ c.260 ]




ПОИСК





Смотрите так же термины и статьи:

Зола — г) Мышьяк

Золь

Мер золит

Мышьяк сульфид

Устойчивость золей

золы



© 2024 chem21.info Реклама на сайте