Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сплавы кремнистые

    Кремнистые чугуны. Распространены две марки железокремнистых сплавов (кремнистых чугунов), различающихся содержанием кремния и углерода С15 (0,5—0,8% С, 14,5—15% Si) и С17 (0,3—0,8% С. 16— 18% Si). Чем больше в сплаве кремния, тем меньше должно быть углерода. Высококремнистые сплавы, содержащие 14,5—18% Si, относятся к группе кислотостойких сплавов. При содержании кремния менее 14,5% коррозионная стойкость сплава недостаточна. При содержании кремния [c.18]


    Титам и его сплавы Титана тетрахлорид Триэтилалюминий Хлорсульфоновая кислота Цезий металлический Цинковая пыль Железо кремнистое (ферросилиций) [c.98]

    Сводные данные о коррозионном поведении кремнистой бронзы на различных глубинах показаны на рис. 53. Скорости коррозии в воде лежат в пределах 10—50 мкм/год. Данные для 5 %- и 7 %-ной алюминиевой бронзы представлены на рис. 54. Скорости коррозии 5 %-ного сплава не превышают 20 мкм/год. 7 %-ный сплав на малой глубине корродирует со скоростью, достигающей 74 мкм/год, а на глубине 1830 м скорость коррозии падает до 36 мкм/год. Осмотр образцов [c.104]

    Железокремнистые сплавы — кремнистый (14—16% Si), а также кремнемолибденовый (14—16% Si-f-3% Мо) чугуны — отличаются высокой коррозионной стойкостью во влажном хлоре и хлорной воде при комнатной температуре. Центробежные насосы, арматура, трубы, эжекторы и распределительные устройства, изготовленные из этих сплавов, используют для работы в контакте с влажным хлором, хлорной водой и другими водными хлорсодержащими средами при температурах не выше 20° С. [c.15]

    Кремнистые бронзы. Кремнистые бронзы могут содержать кремния до 15%, но только при содержании кремния не выще 3—4% сплав имеет структуру а-твердого раствора. При таком содержании кремния бронза обладает высокой пластичностью и пригодна для всех видов механической обработки и хорошо сваривается. Такая бронза нашла только ограниченное применение в химическом машиностроении. [c.251]

    В Советском Союзе распространены две марки железокремнистых сплавов (кремнистых чугунов), различающиеся содержанием кремния и углерода С15 (0,5—0,8% С, 14,5—15% Si) и С17 (0,3—0,8% С, 16,0—18,0% Si). Чем больше в сплаве кремния, тем меньше должно быть углерода. Оптимальное содержание углерода соответствует эвтектическому составу для данного сплава. Благодаря большому сродству кремния к железу, углерод не дает карбидов железа. Сплав С17 применяется в тех случаях, когда требуются отливки с повышенной коррозионной стойкостью. [c.239]

    Анализ имеющихся в литературе опытных данных о скорости окалинообразования на сплавах железа показал, что для сплавов с хромом при высоких температурах в воздухе и в водяном паре они удовлетворительны, для кремнистого железа и стали, содержащей одновременно хром и кремний, хорошо согласуются с теоретическими выводами, а для сплавов железа с никелем имеется качественное согласование. [c.102]


    Кремнистая бронза Латунь (70% Си, 29% 2п, 1% 5п) Медноникелевый сплав (70% Си, 30% N1) [c.457]

    В качестве анодов используют свинец, сплав свинца с сурьмой или кремнистый чугун. Время очистки составляет примерно 40 с. Анодное травление сопровождается некоторым растворением основного металла и бурным выделением на его поверхности кислорода. В качестве катода в этом случае можно применить железо, медь или свинец (пластина). [c.108]

    Кремнистые сплавы в среднем дают потерю, равную 1—3 кг на 1 г меди. Перенапряжение на них примерно на 1 в выше, чем на свинцовых (см. гл. II, 4). Есть сведения, что в настоящее время на южно-американских заводах в качестве анодов применяются сплавы свинца с серебром (1% Ад). Это подтверждается данными о напряжении на ваннах. [c.232]

    Применение в технике и других областях. Кремний в виде ферросилиция находит большое применение в производстве железа и стали для раскисления образующейся в процессе приготовления стали окиси железа. Он употребляется также для получения четыреххлористого кремния, являющегося исходным продуктом для синтеза многих кремнийорганических соединений. Ферросилиций применяется для изготовления кислотоупорных материалов, производства водорода, различных кремнистых сплавов и т. п. [c.483]

    Свободный кремний применяют в производстве кремнистых сталей, отличающихся высокой жаропрочностью и кислотоупорностью. В эти стали кремний вводится в виде сплава с железом — ферросилиция. [c.107]

    Рабочие, запятые плавкой кремния и кремнистых сплавов [c.179]

    Глубокие язвы, заполненные продуктами коррозии зеленого цвета, наблюдаются на медных нагревательных колонках ванн, когда топливо содержит соединения галогенов. Склонность к образованию язв объясняется также структурой сплавов, например кремнистые бронзы используются в снсте , ах горячего [c.116]

    Материал катода должен быть устойчивым при высоких плотностях катодного тока (5—500 А/м ) и не подвергаться коррозии в рабочей среде в периоды выключения тока. В зависимости от агрессивности среды применяют катоды из кремнистого чугуна, молибдена, сплавов титана, из нержавеющих и углеродистых сталей, из никеля. Расположение катодов должно обеспечивать наиболее равномерное распределение тока на защищаемой поверхности. Разработано несколько вариантов конструкций узлов катода применительно к конкретным изделиям. [c.145]

    Бронзы подразделяются по основному входяп1сму в их состав компоненту (кроме меди) на оловянные, алюми[1иевые, кремнистые и др. Из них оловянные представляют собой самые древние сплавы. На протяжении столетий они занимали ведущее место во многих отраслях производства. Сейчас применение их в машиностроении сокращается. Более широко применяются алюминиевые бронзы (5—10% А1 и добавки Ре, Мп, N1). Бернллиевые бронзы очень прочны и применяются для изготовления пружин и других ответственных деталей. [c.572]

    Соляная кислота ( Концентрирован ная (уд вес 1,19) То же Разбавленная Высокая Обычная Обычная Вольфрам, тантал, золото, иридий, родий, эбонит (до 66°). мягкая резина (до 110°), продо-рит (до 80°), горная порода—андезит, стекло, бакелет Те же и, кроме того, железокремнистый сплав (14—16% Si), свинец (медленно разрушается), керамика (трубопроводы, насосы), эбонитовая обкладка (например, железных труб) Те же, что и для концентрированной при высокой температуре й, кроме того, железокремнистый сплав (14—16% S ), твердый свинец (с добавкой сурьмы), алюминиевая брон , ыед-ноникелевые сплавы, кремнистая медь, никель, хромовое покрытие, молибденовое покрытие [c.36]

    Железокремнистые (ферросилидные) заземления. Железокремнистыми сплавами (кремнистыми чугунами) называют сплавы железа с 12—18% кремния и 0,6—0,9% углерода. В зарубежной антикоррозионной технике они известны под названиями ацидур, аптацид, [c.67]

    Важнее значение приобрел кремний в настоящее время и как главная, после основного элемента, составляющая цветных сплавов кремнистые бронвы и латуни (до 5% Si), силумины (да 13 /о Si) и как добавка, улучшающая свойства многих алюминиевых и медных сплавов. [c.300]

    Каллис, сравнивая сопротивление материалов кавитационным разрушениям и гидравлическому удару, пришел к заключению, что теория чисто механического действия не пригодна для объяснения результатов, полученных в эксплуатации. Он писал существует обнадеживающая закономерность в относительной стойкости сходных материалов при различных испытаниях, и обычно находят, что материалы с хорошей коррозионной стойкостью в неподвижном растворе, например в морской воде с нормальным содержанием кислорода, ведут себя хорошо при испытании на эрозию . Внимательное рассмотрение литых сплавов на медной основе показывает, что наиболее высокой сопротивляемостью обладает алюминиевая бронза и высокопрочная латунь с большим содержанием алюминия, затем следует высокопрочная латунь с содержанием 2% алюминия или меньше, и наиболее низким сопротивлением обладает патронный сплав, кремнистая бронза и чистая латунь. [c.690]


    В химической промышленности насосы щироко применяются для перекачивания кпслот, щелочей, рассолов и других вязких жидкостей, часто содержащих твердые взвеси. Такие насосы изготовляются из коррозионностойких и износоустойчивых металлических сплавов (например, хромоникелевые сплавы с присадкой титана или молибдена, кремнистые и высокохромистые чу-гуны), для изготовления насосов применяются также пластические массы (например, фаолит) и керамика. [c.192]

    Известны меднокремнистые сплавы — бронзы (2—5% Si), сплавы алюминия с кремнием — силумины (4,5—14% Si), кремнистая сталь (0,5—2% Si) и кремнемарганцовая сталь (2% Si). Все марки чугуна содержат добавки кремния, что усиливает гра-фитизацию углерода, а следовательно, повышает механическую прочность. [c.8]

    Вредное действие иона ЫОз", так же как и иона С1 , проявляется в ра фушающем действии на свинцовые аноды. Способов удаления иона N03 из раствора не существует. При наличии его обычные свинцовые аноды приходится заменять анодами, отлитыми из кремнистого сплава Чилекс (53% Си, 23% Ре, 23% 51) или из плавленого магнетита. [c.35]

    Свободный кремний используют для производства сплавов и в цветной металлургии силумин АЛ, кремнистая бронза БрКМцЗ-1, сплавы никеля. Свободный кремний идет также на силицирование поверхностей с целью защиты их от коррозии при высоких температурах. Свойства свободного кремния приведены в табл. 13.8. [c.413]

    Кремний имеет значительно большее сродство к кислороду, чем углерод, что подтверждается значениями их теплот сгорания С + О2 = СО2 + 395 кДж 51 + О2 = = 5102 + 861 кДж. Поэтому его применяют для раскисления железных сплавов — удаления из них кислорода (например, 2РеО + 51 = 2Ре + 510г). При этом кремний, восстанавливая оксид металла, переходит в виде 5162 в шлак. Как легирующая добавка, кремний повышает прочность, упругость и коррозионную стойкость стали. Сталь с содержанием 4% кремния намагничивается и размагничивается быстрее, чем чистое железо. Кремнистые стали применяют в производстве трансформаторов, рессор и пружин. Сталь, содержащая 12—18% 51, обладает высокой кислотоупорностью. Сплавы алюминия с кремнием (4,5—14% 51)—силумины — обладают повышенной прочностью. [c.361]

    Кремнистые и марганцевистые бронзы с содержанием кремния до 4 /о обладают хорошей коррозионной устойчивостью и механическими свойствами. Литейный сплав с повышенным содержанием кремния (до 15%) в соляной кислоте и жидком броме более устойчив, чем чугун с 18% кремния. Кислотоустой-чивость этих бронз зависит от концентрации кислоты и аэрации [c.122]

    Для изготовления химической аппаратуры чаще всего применяют технический алюминий с чистотой порядка 99,5%. Из алюминия более высокой степени чистоты (99,90% и выше) изготавливают только аппараты и реакторы, контактирующие с концентрированной азотной кислотой. Его устойчивость в сухом броме, яблочной, борной и лимонной кислотах и в других средах выше, чем у технического алюминия, но практически это различие незначительно. В щавелевой, фосфорной и уксусной кислотах алюминий марок АОО, АДОО, АДО и АД1 имеет сходную коррозионную устойчивость. При получении уксусной, абиетиновой, масляной, капроновой и каприловой кислот, эти-ленбромида, амилового, метилового, этилового и бутилового спиртов, анизола, циклогексанона, крезола, фенола и др, в реакторах из алюминия необходимо иметь в виду, что он устойчив в пассивном состоянии только лишь при минимальном содержании влаги в среде. Применение алюминиевых сплавов, содержащих медь, для изготовления аппаратуры для производства уксусной кислоты недопустимо. Кремнисто-алюминиевые сплавы (силумины) пригодны для изготовления литых деталей насосов, работающих в среде уксусной кислоты. [c.125]

    Кремнистый чугун марки СЧ21-40 (2,4—2,5 % С, 5—10% 81, 0,5—0,6 % Мп) является наиболее доступным жаростойким литейным сплавом. Высокое содержание кремния обеспечивает жаростойкость до 850 °С. [c.71]

    Влияние концентрации растворенного кислорода на коррозию образцов из 181 металла и сплава в морской воде было исследовано в экспериментах, проведенных Строительной лабораторией ВМС США [132]. Был проведен линейный регрессионный анализ данных, полученных при экспозиции 12-мес на глубинах 1,5 760 и 1830 м (содержание кислорода 5,75, 0,4 и 1,35 мг/кг соответственно). Линейное возрастание скорости коррозии при повышении концентрации кислорода в морской воде наблюдалось для следующих металлов углеродистые и низколегированные стали, чугун, медные сплавы (за исключением Мунц-металла и марганцовистой латуни марки А), нержавеющая сталь 410, сплавы N1—200, Моннель 400, Инконель 600, Инконель. 750, №—ЗОМо—2Ре и свинец. Скорости коррозии многих других сплавов возрастали с температурой, но зависимость не была линейной. Многие сплавы не подвергались коррозии в течение года ни в одной из испытывавшихся партий образцов. К таким металлам относятся кремнистые чугуны, некоторые нержавеющие стали серии 18Сг—8М , некоторые сплавы систем N1—Сг—Ре и N1—Сг—Мо, титановые сплавы, ниобий и тантал. [c.176]


Смотреть страницы где упоминается термин Сплавы кремнистые: [c.243]    [c.398]    [c.70]    [c.300]    [c.18]    [c.196]    [c.79]    [c.232]    [c.103]    [c.812]    [c.812]    [c.833]    [c.129]    [c.13]    [c.77]    [c.232]    [c.479]    [c.238]    [c.272]   
Коррозия и основы гальваностегии Издание 2 (1987) -- [ c.53 ]




ПОИСК





Смотрите так же термины и статьи:

Алюмо-кремнистый сплав силумин

Алюмо-кремнистый сплав силумин линейная усадка

Алюмо-кремнистый сплав силумин химическая стойкость

Алюмо-кремнистый сплав силумин химический состав

Железо кремнистые сплавы

Железо-кремнистый сплав ферросилид

Железо-кремнистый сплав ферросилид марки, состав и применение

Железо-кремнистый сплав ферросилид отливки

Никелевые сплавы никель-кремнистый



© 2025 chem21.info Реклама на сайте