Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Лазер фотохимическое применение

    Эта книга состоит из трех глав. В гл. 1 в краткой форме излагаются вопросы получения и применения тонких пленок. Помимо термического испарения и катодного распыления рассматривается обработка пленок с помощью электронных и ионных пучков и лазеров, фотохимическая обработка пленок, а также осаждение пленок из паровой и газовой фазы. Показана специфика применения тонких пленок в оптическом производстве, в технике СВЧ и в запоминающих устройствах цифровых вычислительных машин. Значительное внимание [c.5]


    В настоящее время лазеры широко используются в науке и промышленности. Они начинают решительно проникать и в повседневную жизнь, находя применение в сканерах чековых аппаратов супермаркетов, в воспроизведении с видео- и компакт-дисков. В связи с такими замечательными свойствами лазерного излучения, как монохроматичность, высокая интенсивность, короткая длительность импульса, применение их в фотохимических исследованиях в последнее время значительно возросло. Лазерные методы, используемые в экспериментальной фотохимии, обсуждаются в гл. 7. Само действие лазера основано на фотохимических процессах, обсуждаемых в этой и предыдущих главах. Поэтому стоит закончить данную главу кратким обзором некоторых важных классов лазеров на фотохимическом языке. [c.141]

    В идеальном фотохимическом эксперименте должен исполь зоваться монохроматический свет, так как природа многих первичных процессов и их квантовые выходы могут зависеть от длины волны света. Кроме того, применение монохроматического излучения упрощает измерения абсолютных интенсивностей света. Но большинство источников света, исключая лазеры, дают излучение в некотором спектральном диапазоне, и для выделения света с узкой полосой длин волн требуются специальные приборы. Для этой цели хорошо подходят решеточные и призменные монохроматоры, хотя для некоторых экспериментов интенсивности получаемого света могут оказаться недостаточными. В более простых случаях применяют один или несколько цветных фильтров. Ими могут быть жидкие растворы или стекла, которые содержат соединения, обладающие сильным поглощением света с нежелательными длинами волн. Большое значение для фотохимии имеют интерференционные светофильтры, основанные на явлениях интерференции в тонких пленках (родственных цветовым эффектам в мыльных пузырях), которые могут быть изготовлены с любыми нужными характеристиками пропускания. [c.179]

    Можно ожидать, что лазеры в качестве источников света найдут широкое применение в промышленном синтезе. Однако необходимые мощные лазеры до сих пор отсутствуют в продаже, и лазерные методики ограничиваются в промышленности избирательным разделением молекул и атомов. Примером такого использования служит фотохимическое разделение изотопов. Лазерное разделение изотопов зависит от сдвигов в спектре оптического поглощения в результате изотопного замещения. [c.286]


    Изобретение лазеров в 1960 г. создало предпосылки для обращения к фотохимии как основе промышленных процессов. Высокая интенсивность, монохроматичность излучения и приемлемая эффективность лазеров явились основой для успешных лабораторных демонстраций химических реакций, инициированных лазерным излучением. В разд. 6.4 показано, что большое число таких химических превращений может быть использовано для разделения изотопов. При этом оказываются действенными как традиционная фотохимическая техника, так и некоторые новые методы, ставшие возможными лишь благодаря использованию лазеров. Раздел 6.3 посвящен применению лазеров для получения атомных ионов. [c.256]

    Практическое применение лазеров на органических люминофорах основано на их использовании как когерентных монохроматических источников света переменной частоты. Они полезны при изучении процессов, происходящих в возбужденных состояниях молекул веществ, способных генерировать и при исследовании фотохимических реакций. Интенсивное монохроматическое излучение с частотой, резонирующей с одной из частот колебаний сложной молекулы, может вызвать направленные процессы различных превращений молекул [6]. [c.265]

    Так можно назвать применение химических принципов, свойств и методов для разделения смесей, в том числе минеральных руд, на составляющие их отдельные элементы и соединения. Разделение основано на различии таких свойств компонентов смеси (элементов и молекул), как растворимость, летучесть, адсорбционная способность, способность к экстракции, стереохимия и ионные свойства. Вот пример. Нужно выделить из минерала монацита и отделить друг от друга редкоземельные элементы неодим и празеодим, играющие важную роль в производстве лазеров. Самая трудная стадия этого процесса — отделение неодима и празеодима от церия, который имеет те же химические свойства. Фотохимические исследования показали, что разделение можно значительно улучшить с помощью избирательного возбуждения при облучении, поскольку это позволяет воспользоваться различиями в химических свойствах возбужденных состояний ионов. [c.198]

    Короткая гл. 10 содержит описание методики проведения фотохимических реакций, актинометрии. (Метод импульсной спектроскопии, к сожалению, мало распространенный в советских лабораториях, кратко описан в гл. 4.) Кроме того, в гл. 10 затронуты вопросы применения лазеров в фотохимии. [c.6]

    Широкое применение фотохимические процессы находят в лазерной технике. В некоторых лазерах, называемых химическими, для накопления энергии используют тепловые эффекты химических реакций, например, реакции фтора с водородом. [c.191]

    Наиболее существенным моментом в применении МОС в качестве модуляторов лазерного излучения является фотохимическая устойчивость активного МОС и подходящие расположения поглощающего уровня и уровня, расположенного выше его, ответственного за поглощение в возбужденном состоянии. Частота последнего не должна совпадать с частотой света лазера. [c.70]

    Для проведения строго направленных фотохимических реакций используют монохроматическое излучение (лазеры). Лазерное излучение обладает уникальными свойствами, которых нет у обычных источников света. Наиболее важным свойством лазерного излучения с точки зрения применения его для фотохимического инициирования химических процессов является излучение мощных потоков световой энергии в узких спектральных интервалах. Используя излучение определенной длины волны, погло-щаемое реагентом, но не поглощаемое примесями, можно осуществлять только один вполне определенный процесс. Так, при лазерном облучении смеси СН3ОН, СОзОО (О — дейтерий) и Вг2 происходит бромирование только СН3ОН вследствие избирательного возбуждения молекул. Если данное вещество способно, например, к распаду и к изомеризации, то можно, используя лазерное излучение, осуществить направленно только один процесс. [c.120]

    Решение этих задач сопровождается расширением научно-исследовательских работ по созданию ряда новых промышленных процессов радиационно-химических, плазмохимических методов синтеза, исиоль-зование лазеров в химических процессах, расширение применения гомогенного катализа, работ по иолупропицаемым мембранам в процессах разделения расширение использования фотохимического инициирования для радикальных реакций хлорирования, сульфоокисления и сульфохлорирования, что позволяет работать при сравнительно низких температурах в области синтеза витаминов, фармацевтических и душистых веществ. [c.9]

    Ясно, что при работе с микроколичествами лазер как источник возбуждения имеет преимущество, поскольку обеспечивает концентрацию большого потока возбуждающего света на очень малую площадь. Фотохимическое разложение, несомненно, создаст трудности, но при работе в твердой среде при низкой температуре они могут быть сведены к минимуму. При исследованиях несколько больших образцов лазер можно использовать для получения световых потоков, достаточно больших, чтобы даже в случае короткоживущих триплетов можно было наблюдать аннигиляционную замедленную флуоресценцию. Мощные лазеры позволяют возбуждать фосфоресценцию и замедленную флуоресценцию при триилет-синглетном поглощении (см., например, работы [439, 440]). Уже имеются лазеры, дающие излучение при нескольких длинах волн в ультрафиолетовой области, и быстрый прогресс в лазерной технологии позволяет рассчитывать на широкое использование их в качестве источников возбуждения во многих областях исследования и применения фотолюминесценции. [c.478]


    Благодаря импульсной спектроскопии можно непосредственно обнаруживать появляющиеся при фотохимических реакциях ко-роткоживущие частицы в возбужденном (например, триплетном) или основном состоянии (например, радикалы, ионы), если они отличаются по спектру от исходных систем [11, 12]. По существу, при этом используются методы абсорбционной или эмиссионной спектроскопии с тем, однако, отличием, что при облучении интенсивной вспышкой образуются значительно более высокие концентрации возбужденных молекул. Благодаря этому, например, могут быть зарегистрированы триплетные состояния в растворах даже при нормальных температурах. Важным условием для применения импульсного метода является небольшая продолжительность вспышки по сравнению с временем жизни обнаруживаемых частиц. Поэтому для генерации светового импульса применяют а) фо-тоимпульсные лампы с продолжительностью импульса 10 с — для наблюдения триплетных состояний б) лазеры с длительностью импульса 10 —10 с, которая позволяет исследовать интервалы времени, типичные для синглетных возбужденных состояний (10- с) в) лазеры с очень короткими импульсами порядка 10 —10 2 с (например, неодимовый лазер), с помощью которых можно исследовать механизм безызлучательной релаксации и т. п. [c.99]

    Таким образом, облучение органических красителей может приводить к самым разнообразным фотохимическим реакциям. В настоящее время природа этих процессов стала намного яснее и может быть объясненя с точки зрения современной органической фотохимии. Знание механизмов фотохимических реакций будет способствовать дальнейшей разработке методов предотвращения деструктивного влияния красителя при облучении как в технических, так и биологических процессах, а также позволит расширить область практического использования фотоактивности красителей. Кроме применения красителей в вышеприведенных случаях, можно указать также и на применение их в лазерах с пассивной модуляцией добротности [759—762], жидкостных лазерах [763—766а], химических дозиметрах [767—770], кислородных системах для космических кораблей [751], при защите от яркой вспышки света и в элементах памяти счетно-решающих устройств [209, 771], в фотографических процессах нового типа [103], фотоэлектрохимических преобразователях [772], катодах для топливных элементов [773— 775], детекторах газов [6, 776] или светочувствительных антикатодах э кинескопах для телевидения [777]. [c.466]

    Едва ли надо подчеркивать важность изготовления лазеров, действующих при этой И более коротких длинах волн. Интенсивный строго моно-хроматичный источник света имел бы большое значение для исследователей фотохимических процессов и для спектроскопистов при исследованиях строения молекул, не говоря уже о более очевидных применениях в других областях человеческой деятельности. Вследствие этого несколько групп исследователей в данное время пытаются воспроизвести полученные результаты. Насколько известно автору, ни одна из этих попыток пока не увенчалась успехом. Причины этого неизвестны. Неустойчивые оптические эффекты действительно наблюдались в нашей лаборатории [210] после импульсного облучения бензофенона в твердом стекле при 77° К- Однако эти эффекты, как выяснилось, были обусловлены растрескиванием стекла при нагреве, вызванном вспышкой, что приводит к внезапному увеличению рассеяния и попаданию рассеянного света на детектор. Следует отметить, что для явления растрескивания имеется точно такой же энергетический порог, как и для истинного вынужденного испускания. [c.135]


Смотреть страницы где упоминается термин Лазер фотохимическое применение: [c.511]    [c.277]   
Молекулярная фотохимия (1967) -- [ c.300 ]




ПОИСК





Смотрите так же термины и статьи:

Лазер

УАС-лазер лазеры



© 2025 chem21.info Реклама на сайте