Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Монохроматор призменный

    Назначение и принцип действия. Регистрирующие двухлучевые спектрофотометры СФ-10, СФ-14, СФ-18 предназначены для измерения пропускания (оптической плотности) прозрачных и мутных сред и коэффициентов диффузного отражения твердых и порошкообразных веществ в видимой области спектра. Спектрофотометры состоят из осветителя, двойного призменного монохроматора, фотометра поляризационного типа, приемно-усилительной части и записывающего механизма. [c.214]


    В настоящее время при проведении фотохимических экспериментов используются как призменные, так и дифракционные монохроматоры. В сочетании с ртутными лампами среднего давления эти приборы позволяют получить монохроматический свет достаточно высокой интенсивности, пригодный для проведения фотохимических реакций в тех участках спектра, для которых нет достаточно хороших химических и стеклянных светофильтров, например, линии 253,7 265,2 280,4 296,7—302,5 нм. [c.141]

    Преимущество призменных монохроматоров заключается в их большей простоте по сравнению с дифракционными. Недостатками призменных монохроматоров являются ограниченное разрешение, его зависимость от длины волны и чувствительность дисперсии к изменению температуры. Призмы также искривляют изображение прямой входной щели в фокальной плоскости выходной щели, причем кривизна проекции щели в виде сегмента параболы зависит от длины волны. Для компенсации этого эффекта, который может быть основной причиной, ограничивающей реальное разрешение спектрофотометра, одну из щелей (или обе) обычно искривляют [79]. [c.27]

    Как указывает название, спектрофотометр является приборам для измерения интенсивности света различной длины волн, прошедшего через раствор или другую среду или отраженного ими. Он состоит в основном из монохроматора (призменного или [c.64]

    Ширина полос поглощения жидкостей на два-четыре порядка превосходит ширину линий поглощения газов при обычных давлениях, а ее зависимость от изменений среды (растворитель, другие компоненты смеси, температура) относительно много меньше зависимости ширины линий газа от давления. У жидких углеводородов ширина полос достигает 30 см -, как правило, она имеет величину от 15 до —5 см . Примерно в тех же пределах меняется и ширина полос обычных призменных монохроматоров. Поэтому наблюдаемые контуры полос оказываются в большей иди меньшей степени сглаженными (рис. 7), но в отличие от газов наблюдаемая величина может сравниваться с соответствующей истинной в той же точке . В последние годы инфракрасные спектрофотометры быстро совершенствуются, повышается их практическая разрешающая способность и соответственно измеряемые интенсивности полос приближаются к истинным. Например, такие большие расхождения, как 13 приведенном выше примере бензола, уже сравнительно редки, а обычные величины расхождений составляют 10—100%. [c.497]

    По способу монохроматизации лучистого потока приборы с призменным или решеточным монохроматором, позволяющие достигать высокой степени монохроматизации рабочего излучения, называют спектрофотометрами приборы, в которых монохроматизация достигается с помощью светофильтров, называют фотоэлектроколориметрами. [c.63]


    Основные характеристики и конструкции монохроматоров. Монохроматоры применяют во всех оптических областях спектра от вакуумного ультрафиолета до далекой инфракрасной области. Конечно, один монохроматор не может охватить всю эту область спектра и каждый прибор рассчитан на работу в определенном диапазоне. Наиболее распространены монохроматоры, рабочий диапазон которых охватывает видимую и ультрафиолетовую области. Широко применяются также приборы, работающие в ближней инфракрасной области до 25 мк. Выпускают монохроматоры с самой различной линейной дисперсией и разрешающей способностью от призменных приборов малой и средней дисперсии, предназначенных, главным образом, для абсорбционных приборов, до больших монохроматоров с вогнутыми дифракционными решетками, которые позволяют работать даже с очень сложными эмиссионными спектрами. Увеличение монохроматоров равно единице или очень близко к этой величине. [c.144]

    Монохроматор фотоэлектрического стилометра собран на базе трех-призменного стеклянного спектрографа ИСП-51. Вместо камеры при- [c.147]

    В идеальном фотохимическом эксперименте должен исполь зоваться монохроматический свет, так как природа многих первичных процессов и их квантовые выходы могут зависеть от длины волны света. Кроме того, применение монохроматического излучения упрощает измерения абсолютных интенсивностей света. Но большинство источников света, исключая лазеры, дают излучение в некотором спектральном диапазоне, и для выделения света с узкой полосой длин волн требуются специальные приборы. Для этой цели хорошо подходят решеточные и призменные монохроматоры, хотя для некоторых экспериментов интенсивности получаемого света могут оказаться недостаточными. В более простых случаях применяют один или несколько цветных фильтров. Ими могут быть жидкие растворы или стекла, которые содержат соединения, обладающие сильным поглощением света с нежелательными длинами волн. Большое значение для фотохимии имеют интерференционные светофильтры, основанные на явлениях интерференции в тонких пленках (родственных цветовым эффектам в мыльных пузырях), которые могут быть изготовлены с любыми нужными характеристиками пропускания. [c.179]

    Источники ИК-излучения испускают полихроматическое излучение. В спектроскопических методах работают либо с монохроматическим излучением (используя системы с монохроматорами) по причинам, обсуждавшимся в начале этой главы, либо со сложными кодирующими системами (мультиплексные системы). В первом случае для получения всего спектра применяют призменные монохроматоры или дифракционные решетки. Во втором случае для модулирования ИК-излучения обычно используют интерферометр Майкельсона. Если необходимы узкие спектральные диапазоны, удобно использовать оптические фильтры или лазерные источники. [c.171]

    Монохроматор для инфракрасного излучения может быть или призменный или с дифракционной решеткой чаще употребляется призменный. Однако ни кварц, ни стекло не являются достаточно прозрачными для инфракрасного излучения это обстоятельство заставляет обращаться к другим материалам для изготовления призм и линз. Большие кристаллы некоторых галогенных солей хорошо пропускают излучение и поэтому могут использоваться для изготовления оптических частей приборов. В табл. 4.2 приведены приблизительные значения верхней грани- [c.75]

    В монохроматорах большинства современных выпускаемых промышленностью приборов используется призменная оптика. Чаще всего применяется кварц, так как он дает хорошую дисперсию в области от 1850 до 13 ООО А флюорит можно использовать при длинах волн от 1850 до 1200 А, как это показано в оригинальной работе Шумана [49]. Для более коротких волн, как это было показано Лайманом [31], необходимо применять отражательные решетки и создавать вакуум во всем приборе. [c.227]

    Для получения максимально высокого разрешения при детальном изучении инфракрасных спектров наиболее желательным устройством является спектрометр с дифракционными решетками, соединенный с призменным монохроматором в качестве первичного источника. [c.250]

    Интенсивность излучения обычно измеряется с помощью фотоумножителя и монохроматора. В ранних исследованиях для выделения спектральной атомной линии использовались оптические фильтры, что, безусловно, ограничивало возможности спектрометрического анализа. Значительно больше информации дает изучение многих линий или спектральных полос с помощью призменных или дифракционных монохроматоров. Обычно для улучшения отношения сигнал/шум модулированный световой поток от пламени регистрируется в режиме двухканального синхронного детектирования с использованием фазочувствительного детектора, усилителя с большим коэффициентом усиления и самописца. [c.226]


    Рнс. 19-2. Схема простого призменного монохроматора  [c.630]

    При работе в УФ области источш1К иэлучения - водородная дампа, в видимой - лампа накаливания. Монохроматор - призменный шш на основе дифракционной решетки (спектрофотометр). В фотоэлектроколориметрах вместо монохроматора используют светофильтры о определенной полосой щюпусКания. Приемник излучения - фотоэлемент, регистратор - измерительный прибор. [c.21]

    Универсальный монохроматор призменный средней светосилы с линзевой фокусирующей оптикой для абсорбционного анализа ТУ 3-3-285—76 [c.121]

    Для ординарного монохроматора (призменного или с диф-фракционной решеткой) с равной спектральной шириной входной и выходной щелей треугольная функция монохроматора (5) являф ся достаточно тачным приближением к истине  [c.239]

    Диспергирующий элемент Призменный Эберта—Фасти и дифракционный Призменный монохроматор Призменный монохроматор Дифракционный Дифракционный [c.154]

    Изучение спектров поглощения систем, обладающих тонкой структурой спектров, требует использования приборов с высокомонохрома-тизированным потоком излучения (призменные приборы или приборы с дифракционными решетками). В то же время для проведения количественного спектрофотометрического анализа в большинстве случаев достаточно иметь прибор, в котором монохроматорами являются светофильтры. Каждый светофильтр характеризуется Л,макс и полушириной пропускания (для визуальных приборов вместо Ямакс пропускания дается Лаф, которую вычисляют с учетом чувствительности глаза).  [c.71]

    Источником света служил полый катод, охлаждаемый жидким азотом. По-видимому, для уменьшения влияния рассеянного света монохроматизация осуществлялась двумя последовательно хстановленными монохроматорами призменным монохроматО  [c.560]

    Как указывает само название, спектрофотометр — это прибор для измерения интенсивности света различной длины волн, прошедшего (или отраженного) через раствор или другую среду. Он состоит в основном из монохроматора (призменного или с дифракционной решеткой для получения монохроматического света ), одной или нескольких кювет для анализируемого раствора и раствора сравнения и фотометрического устройства для субъективного или объективного измерения интенсивности прошедшего (через раствор) света. Вместо монохроматора можно применять светофильтры для выделения более или менее узкого участка длин волн источника с непрерывным светом. Такие приборы называютфильтрофотометрами. Иногда для получения монохроматического света применяется ртутная дуга с соответствующим фильтром выбор длины волны, конечно, ограничен. [c.90]

    Спектрофотометр состоит из осветителя, двойного призменного монохроматора, фотометра поляризациоиноготипа, приемно-усилительного устройства и записывающего устройства. Оптическая схема прибора (рис. 32) состоит из спектральной и фотометрической частей. Свет от источника света кинопроекционной лампы / через конде[)сор 2 [c.48]

    Основной источник систематических ошибок связан с не-монохроматичностью излучения. Монохроматор может выделить из спектра излучения источника более или менее широкий, но всегда конечный участок спектра, который мы называем полосой монохроматора. Любая измеренная в точке величина (/, Т, В,) является эффективной, определенным образом усредненной в пределах полосы монохроматора, и результат такого усреднения в общем случае существенно зависит от ширины полосы монохроматора. Практически заметные отличия наблюдаемых величин от истинных будут в тех случаях, когда ширина полосы монохроматора сравнима с шириной полос (линий) поглощения и тем более когда первая превосходит вторую. При этих же условиях теряют силу простые законы поглощения (3)—(6). Величина наблюдающихся инструментальных отклонений от соотношений (3) — (6) зависит от величины погашения, соответственно произведения сх равные отно-сптельные изменения с и а по отдельности приводят к равным аффектам. То, что инструментальные отклонения являются в равной мере отклонениями от закона Бугера-Ламберта (3) и закона Беера (4), позволяет отличать их от действительных отклонений от закона Беера (4), наблюдающихся только при изменении концентрации с. Эффекты, связанные с немонохроматичностью излучения, особенно велики при измерениях спектров газов. Ширина полосы обычных призменных монохроматоров много больше расстояний между линиями и ширины линий вращательной структуры полос поглощения. Поэтому в пределах полосы моно- [c.494]

    Спектрометр является гармоническим анализатором, разлагающим непрерывное излучение на монохроматические составляющие. В современных моделях инфракрасных спектрометров широкое применение получил призменный монохроматор Литтрова и двухлучевая оптическая система, делающая возможным применение усилителей переменного тока для регистрации инфракрасных спектров. Упрощенная схема такого инфракрасного спектрометра изображена на рис. 14. Спектрометр состоит из осветителя, монохроматора, приемника излучения и системы регистрации спектров. С помощью сферических зеркал 2 и плоского зеркала 3 изображение источника непрерывного излучения 1 проецируется на входную щель 5 монохроматора. Вращающееся зеркало-модулятор 4 попеременно освещает выходную щель пучками лучей, проходящими через кювету с образцом К и эталонную кювету /Са. Входная щель 5 расположена в фокальной плоскости коллиматорного параболического зеркала 6, которое преобразует сходящийся пучок лучей в параллельный и направляет его через призму 7 на плоское поворотное зеркало 8 (зеркало Литтрова). Лучи, отраженные зеркалом, второй раз проходят через призму и коллиматор и в фокальной плоскости параболического зеркала 6 дают изображение входной щели, совмещенное с выходной щелью 10. С помощью плоского зеркала И и сферического 12 изображение входной щели фокусируется на входном отверстии приемника 13. В качестве приемников обычно применяются болометры или термоэлементы. [c.38]

    К оптическим характеристикам монохроматора относятся линейная дисперсия, разрешающая способность и светосила. Линейная дисперсия — часть спектра в плоскости выходной щели, приходящаяся на спектральный интервал, равный 1А. Разрешающая способность монохроматора — способность различать две близко расположенные спектральные линии равной интенсивности. Призменные монохроматорь обладают малой разрешающей способно- [c.54]

    Спектрофотометр состоит из источника светового потока, двойного призменного монохроматора, фотометра полярнзационного типа, прнемно-усилительного и записывающего устройств. Оптическая схема прибора (рис. 24) состоит из спектральной н фотометри- [c.47]

    В призменных приборах возможно двукратное использование призм.. Оно состоит в том, что позади призмы помешают зеркало, отражающее прошедшее через призму излучение таким образом, что оно может еще раз пройти, через эту же призму (монохроматор по Литтрову). При двукратном прохождении излучения через призму длина спектра (дисперсия) удваивается. [c.190]

    Спектрофотометры СФ-10, СФ-14 состоят из осветителя, двойного призменного монохроматора, фотометра поляризационного типа, приемно-усилительной части и записывающего механизма. Монохроматический пучок света делится призмой Рошона на два плоскополя-ризованных пучка. Один пучок диафрагмируется, другой проходит через призму Волластона и снова делится на два пучка, поляризованных во взаимно перпендикулярных плоскостях. Так как на призму Волластона падает нлоскополяризованный пучок света, интенсивность пучков света за призмой Волластона определяется угловым положением по отношению к ней призмы Рошона. Далее пучки перекрываются вращающимся барабаном прерывателя таким образом, что интенсивность световых потоков в каждом пучке изменяется по форме трапеции и началу открытия одного пучка соответствует начало закрытия другого. Конструкция барабана прерывателя и скорость его вращения выбраны так, что световой поток меняется с частотой 50 Гц. [c.274]

    Для измерения спектров используют спектральные приборы-спектрофотометры, осн. части к-рого источник излучения, диспергирующий элемент, кювета с исследуемым в-вом, регистрирующее устройство. В качестве источников излучения применяют дейтериевую (или водородную) лампу (в УФ области) и вольфрамовую лампу накаливания или галогенную лампу (в видимой и ближней ИК областях). Приемниками Излучения служат фотоэлектронные умножители (ФЭУ) и фотоэлементы (фоторезисторы на основе PbS). Диспергирующими элементами прибора являются призменный монохроматор или монохроматор с дифракц. решетками. Спектр получают в графич. форме, а в приборах со встроенной мини-ЭВМ-в графической и цифровой формах. Графически спектр регистрируют в координатах длина волны (нм) и(или) волновое число (см )-пропускание (%) и(или) оптич. плотность. Осн. характеристики спектрофотометров точность определения длины волны излучения и величины пропускания, разрешающая способность и светосила, время сканирования спектра. Мини-ЭВМ (или микро-процеесоры) осуществляют автоматизир. управление прибором и разл. мат. обработку получаемых эксперим. данных статистич. обработку результатов измерений логарифмирование величины пропускания, многократное дифференцирование спектра, интегрирование спектра по разл. программам, разделение перекрывающихся полос, расчет концентраций отдельных компонентов и т. п. Спектрофотометры обычно снабжаются набором приставок для получения спектров отражения, работы с образцами при низких и высоких т-рах, для измерения характеристик источников и приемников излучения и т.п. [c.397]

    Для исследования спектров в ИК области используют обычно спектрофотометры, работающие в интервале от 1,0 до 50 мкм (от 10000 до 200 см ). Осн. источниками излучения в них являются стержень из карйида кремния (глобар), штифт из смеси оксидов циркония, тория и иттрия (штифт Нернста) и спираль из нихрома. Приемниками излучения служат термопары (термоэлементы), болометры, разл. модели оптико-акустич. приборов и пироэлектрич. детекторы, напр, на основе дейтерированного триглицинсульфата (ТГС). В спектрофотометрах, сконструированных по классич. схеме, в качестве диспергирующих элементов применяют призменный монохроматор или монохроматор с дифракц. решетками. С кон. 60-х гг. 20 в. вьшускаются ИК фурье-спектрофотометры (см. Фурье-спектроскопия), к-рые обладают уникальными характеристиками разрешающая способность-до 0,001 см точность определения волнового числа v-до 10 " см" (относит, точность Ду/уя  [c.397]

    Детектор с изменяемой дяяной волны может работать и при одной длине волны, которая задается при помощи решеточного или призменного монохроматора аналогично сканирующему фотометру. [c.270]

    По существу дифракционные приборы превосходят призменные благодаря лучшей разрешающей способности, а она сопровождается более высокой точностью при качественных и количественных измерениях спектров. Повышенное разрешение связано с более высоким пропусканием энергии как показывают расчеты, для эквивалентных монохроматоров при оптимальных условиях яркость или световой поток, проходящий через решетку, больше, чем через призму из КаС1, в 6,7 раза при 625 см" в 25 раз при 1250 см , в 50 раз при 2500 см и в 100 раз при 5000 см [47]. На практике эти цифры несколько ниже [11]. Другим преимуществом решетки является [c.27]

    В установке по измерению спектров люминесценции гальванометр может быть заменен записывающим устройством. Затруднения, возникающие цри автоматической записи спектров излучения, связаны главным образом с тем, что, во-первых, дисперсия призменного монохроматора различна для различных областей спектра и, во-вторых, чувствительность ФЭУ зависит от длины волны. Поэтому при автоматической записи спектров излучения необходимо устройство, корректирующее сцектр. [c.174]

    Это значит, что если спектр сканируют при вращении решетки монохроматора с постоянной скоростью, то спектр автоматически регистрируется на диаграмме в линейной шкале длин волн. Если барабан призменного монохроматора вращается с постоянной скоростью, то спектр не получается линейньпи ни в длинах волн, ни в волновых числах. Однако в волновых числах спектр для некоторых целей более удобен. В ИК-спектроско-пии электромагнитное излучение практически вообще не представляют в единицах длин волн. Вероятно это связано с тем, что данная спектральная область соответствует колебательным процессам, и ее логичнее представлять в единицах, обратно пропорциональных длине, т. е. в обратных сантиметрах — волновых числах. В ИК-спектроскопии их часто называют частотами, имеющими размерность обратные сантиметры. Отметим, что в аналитической молекулярной спектроскопии — спектрофотометрии и люминесценции практически всегда используют нанометры. [c.203]

    Оптическая система пламенного фотометра служит для улавливания лзлученного в пламени света и отбора из нЬго определенной монохроматической части, характерной для эмиссии данного элемента, кроме того, она направляет выделенный свет яа фотоэлектрический, прибор. Известны два основных типа систем. В одном из них используют рассеивающие устройства (призменный монохроматор или дифраадионная решетка), которые успешно выделяют только точно определенный участок спектра. Эти при боры, хотя и обладают хорошими возможностями, очень дороги поэтому чаще используют аппараты, в которых области спектра, [c.353]

    Подходящий спектрорадиометр может быть дополнительно снабжен фотоумножителем 1Р21 R A на выходной щели монохроматора. Электрический сигнал от фотоумножителя попадает в усилитель, а затем на самописец и дает непрерывную запись зависимости спектральной энергии от длины волны в пределах от 3400 до 6500 А. Зависимость, полученная таким образом, является лишь относительной. Для получения абсолютных кривых спектрорадиометр должен быть откалиброван с помощью стандартной лампы с известной спектральной эмиссией. Такую лампу можно приобрести в Национальном бюро стандартов [48, 71, 100]. Путем сравнения кривой, полученной от стандартной лампы с помощью спектрорадиометра, с паспортными данными лампы можно построить таблицу или кривую поправок. Таким путем вносятся поправки на изменение чувствительности детектора с длиной волны, а также на различные особенности прибора, например изменение дисперсии с длиной волны в призменных монохроматорах или различие в отражении или пропускании в дифракционных приборах [14, 57, 61, 66, 74, 75, 85]. [c.289]

    Спектрофотометр Спекорд 75-1К. Обеспечивает измерение в интервале волновых чисел от 4000 до 400 см . Является двойным дифракционно-призменным монохроматором с автоматической регистрацией. Применяют для анализа твердых, жидких и газообразных веществ, идентификации молекулярных групп, изучения соотнощения связей, выяснения пространственной структуры соединений, испытания на чистоту. Источником излучения является инфракрасная горелка, охлаждаемая воздухом. Температура источника излучения 1200 °С. На самописце записывается оптическая плотность в виде функции волнового числа, одновременно регистрируется спектр пропускания. Спектрофотометры Спекорд выпускаются в ГДР, [c.169]

    Ясно, что главным преимуществом монохроматора является очень узкая полоса длин волн, которую можно выбрать и выделить. Раасмот-рим, как это можно осуществить. В основном монохроматор состоит из диспергирующего устройства, фокусирующей оптики и пары щелей. На рис. 19-2 представлена схема типичного призменного монохроматора. Излучение, падающее на входную щель, проходя через линзу, попадает на призму. Внутри призмы излучение в результате преломления разлагается на свои компоненты, ультрафиолетовое излучение преломляется больше всего, а видимый красный свет — меньше всего. Компоненты излучения после преломления фокусируются в фокальной плоскости, где появляется спектр. В фокальную плоскость можно поместить подвижную выходную щель, которую затем можно установить в любое положение для выделения необходимой длины волны или частоты из [c.630]

    Призменные монохроматоры типа, показанного на рнс. 19-2, обла-да.ют дисперсией, которая нелинейна относительно положения фокаль- 0и плоскости. Позтому необходимо внимательно следить за тем, [c.631]


Смотреть страницы где упоминается термин Монохроматор призменный: [c.140]    [c.54]    [c.190]    [c.631]   
Химическое разделение и измерение теория и практика аналитической химии (1978) -- [ c.630 ]

Введение в молекулярную спектроскопию (1975) -- [ c.134 , c.135 ]




ПОИСК





Смотрите так же термины и статьи:

Монохроматор



© 2024 chem21.info Реклама на сайте