Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

РНК взаимодействие нуклеотидный состав

    Нуклеотидный состав. Температура плавления двухспиральных полинуклеотидов зависит также от их состава. С увеличением содержания пар гуанин цитозин Гщ двухспиральных молекул линейно увеличивается 145,212,343-347 как показано на рис. 4.18 (ср. с данными о стабильности пар оснований, стр. 225). В качестве модели для установления зависимости Гт полинуклеотида от состава оснований можно использовать синтетические олигонуклеотиды. При наличии возможности образования трех водородных связей на пару оснований температура плавления соответствующих двухспиральных полинуклеотидов повышается. Тем не менее число водородных связей на пару оснований само по себе не определяет однозначно Тщ двухспирального полинуклеотида. Так, для двухспирального комплекса поли-2-аминоаденило-вой кислоты с полиуридиловой кислотой Гщ значительно ниже, чем для двухспирального комплекса полицитидиловой кислоты с полигуаниловой кислотой, хотя число водородных связей у них одинаково Этот эффект уже был отмечен при взаимодействии мономерных компонентов нуклеиновых кислот (см. стр. 227). [c.265]


    Как указывалось выше, реакционная способность нуклеотидных звеньев существенно зависит от наличия нековалентных взаимодействий с соседними звеньями это позволяет использовать химические методы для изучения вторичной структуры нуклеиновых кислот. В частности, влияние комплементационных взаимодействий оснований на их реакционную способность настолько велико, что возможно избирательно модифицировать звенья полинуклеотидной цепи, находящиеся в односпиральных зонах, и таким образом определить состав и размеры этих зон. Если к тому же известна первичная структура молекулы, то возможно провести и локализацию таких односпиральных участков в цепи. Исследования такого рода широко проводятся во многих лабораториях при помощи реакций с формальдегидом, акрилонитрилом, водорастворимым карбодиимидом, гидроксиламином и другими агентами. [c.18]

    Вторая ступень отбора наиболее важная. Она заключается во взаимодействии определенной, адапторной группы р-РНК с соответствующим, комплементарным ей участком -РНК, которая играет роль матрицы. На этой ступени р-РНК, соединенная с аминокислотой, присоединяется к определенному участку и-РНК, благодаря чему может образоваться характерная для данного белка последовательность аминокислот. Мы видели, что и-РНК синтезируется на ДНК, и ее нуклеотидный состав комплементарен ДНК. Таким образом, наследственная информация, записанная в ДНК в виде определенной последовательности нуклеотидов, передается на и-РНК, которая, в свою очередь, определяет и контролирует характерную для данного белка последовательность аминокислот. [c.295]

    Общеизвестно, что нуклеотидный состав фрагментов ДНК влияет на температуру их плавления. Оптимальные условия для отжига и отмывки нуклеиновых кислот в реакциях гибридизации подбирают исходя из их нуклеотидного состава. В гораздо меньшей степени учитывается вклад стэкинг-взаимодействий в термодинамическую стабильность двойной спирали. А между тем энергия таких взаимодействий между соседними нуклеотидами одной цепи ДНК, удерживающих ее в скрученном состоянии в физиологических растворах, больше энергии водородных связей комплементарного спаривания [29]. Порядок чередования оснований определяет степень стэкинга и, следовательно, влияет на термостабильность фрагмента ДНК. Даже единичная нуклеотидная замена может так сильно сказаться на стэкинг-взаимодей-ствии, что Гт изменится более чем на 1 °С. Поскольку процесс плавления домена практически полностью определяется кооперативными взаимодействиями, любая единичная нуклеотидная замена в любой его точке будет менять температуру плавления. [c.129]


    Нуклеотидный состав, в отличие от последовательности оснований, не играет существенной роли в определении структуры нуклеиновых кислот. Важнейшей чертой всех природных нуклеиновых кислот является сильное взаимодействие А с Т или и и О с С, приводящее к образованию пар оснований. Оно играет решающую роль в образовании двухцепочечных спиральных структур, которые имеют оси симметрии второго порядка, лежащие в плоскости каждой пары оснований. Это означает, что две цепи двойной спирали должны иметь противоположную ориентацию. ДНК, как правило, состоит из двух полностью комплементарных цепей, образующих непрерывную двойную спираль. Молекула РНК обычно представляет собой одну ковалентную цепь, которая образует спирали, скручиваясь сама на себя и формируя таким образом определенную последовательность шпилек и петель. [c.192]

    Необходимо отметить, что химия нуклеиновых кислот, как и всякая химия высокомолекулярных веществ, имеет ряд существен ных отличий от химии соответствующих мономерных компонентов. Уже нуклеозиды и нуклеотиды являются полифункциональными соединениями, хотя различие в реакционной способности определенных группировок, входящих в состав четырех обычных типов нуклеотидных звеньев, сравнительно невелико. Полинуклеотиды представляют собой гигантские молекулы с множеством реакционных центров. Особые сложности в химию нуклеиновых кислот вносят следующие обстоятельства. Реакционная способность отдельных группировок в нуклеотидных звеньях зависит не только от условий реакции (растворителя, pH, температуры и т. д.), но и от наличия и характера взаимодействия отдельных звеньев друг с другом (в одной и той же цепи и на комплементарном участке в двухспиральных двухцепочечных молекулах), а также взаимодействия с молекулами белков, ионами металлов и т. д. Все эти взаимодействия, как правило, кооперативны, т. е. нелинейно изменяются при изменении условий реакции. Модификация одного из звеньев полинуклеотидной цепи приводит к изменению характера и силы взаимодействия этого звена с соседними звеньями (или с молекулой белка в случае нуклеопротеидов), что в конечном счете сказывается на реакционной способности звеньев на обширных участках полинуклеотидной цепи. [c.15]

    Детальный молекулярный механизм регуляторных взаимодействий при синтезе ферментов пока неясен, но описанная выше модель этого механизма создана на основе большого числа экспериментальных данных. Синтез ферментов происходит в рибосомах, и установлено, что состав рибосомальной РНК по своему нуклеотидному составу не является репликой ДНК. Поэтому предполагают, что рибосомы являются неспецифической системой, способной к синтезу различных белков [c.239]

    Принципы действия энхансеров, способных оказывать свое влияние на значительном расстоянии (более чем тысячи нуклеотидных пар) и вне зависимости от ориентации по отношению к старту транскрипции, не выяснены. Короткие нуклеотидные блоки могут служить центрами связывания специфических ядерных белков, выступающих как транс-действующие факторы. Сила энхансера, вероятно, может зависеть от числа таких блоков (модулей). Обсуждаются следующие два основных механизма действия энхансеров. Считается, что функциональные участки генома, содержащие один или несколько генов, образуют длинные петли, включающие десятки тысяч нуклеотидных пар ДНК. Высказано представление, что петли закреплены в матриксе клеточного ядра и могут быть сверхспира-лизованы. В состав матрикса входит топоизомераза И, по-видимому, определяюш,ая топологию петли ДНК (см. гл. ХП), В таком случае взаимодействие энхансера с бе.1ками может менять конформацию всей петли, включая и удаленный от энхансера участок ДНК, в результате чего в составе петли изменяется локальная структура хроматина и облегчается транскрипция гена (рис. 112,6). Более вероятно, что влияние энхансера, связанного с белком, определяется его непосредственным взаи.чодействием с РНК-полимеразой и другими факторами транскрипции в процессе инициации- Такое взаимодействие может осуществляться благодаря сгибанию молекулы ДНК, что создает возможность непосредственного контакта районов промотора и удаленного от него энхансера, связанных со специфическими белками (рис. И2, в). [c.204]

    В клетках пантотеновая кислота входит в состав молекулы СоА. Реакционноспособным центром последнего (рис. 8-1) служит —5Н-группа, а Р-аланиновая часть молекулы пантотеновой кислоты входит в гибкую ножку, к которой прикреплена — Н-группа. Остается загадкой, почему так существенна для жизни пантоевая кислота — маленькая молекула странной формы, которую не может синтезировать организм человека. Некоторые ферменты действуют на простые производные СоА, лишенные как нуклеотидного компонента, так и пантоевой кислоты. Однако в нашем организме должны существовать какие-то ферменты, зависящие от уникальной структуры пантоевой кислоты. Возможно, во взаимодействии с ферментом каким-то образом участвует гидроксильная группа. Возможно также, что две метильные группы принимают участие в образовании триалкильного замка (гл, 6, разд. Д, 7), являющегося частью очень сложного колена или плеча для —5Н-несущей ножки . [c.193]


    На существование таких взаимодействий в растворах олигонуклеотидов указывают отклонения их физико- имических характеристик от аналогичных характеристик, наблюдаемых для смеси мономерных компонентов, состав которых идентичен нуклеотидному составу олигонуклеотидов. Твк, коэффициент моляриой эк-стинкции олиго- и полинуклеотидов меньше, чем сумма коэффициентов молярных экстинкций входящих в него мономеров (этот эффект называется гипохромным эффектом). [c.335]

    Нуклеотидное звено, входя- р (.. 12.З. Спектры флуоресценции щее в состав полинуклеотидной моно-, олиго- и полинуклеотидов цепи, принимает участие в сложном комплексе взаимодействий с соседними звеньями. В возбужденном состоянии такие взаимодействия (особенно обусловленные я-электронами) усиливаются, Об этом свидетельствуют, в частности, более резкие различия в спектрах флуоресценции, чем в спектрах поглощения, нри переходе от моно- к олиго- и полинуклеотидам 5-12.3). С другой стороны, взаимодействие мономерных звеньев в полинуклеотидной цепи изменяет свойства возбужденных состояний полинуклеотидов. Время жизни синглетного возбужденного состояния мононуклеотидных звеньев в полинуклеотиде приблизительно в 100 раз меньше, чем для мономерных компонентов. [c.625]

    Положение спектров поглощения оснований сильно зависит от pH раствора из-за образования различных ионных форм и в меньшей степени от полярности растворителя вследствие межмолекулярных взаимодействий. Спектры поглощения нуклеиновых кислот формируются из спектров поглощения входящих в их состав оснований и имеют усредненную длинноволновую полосу поглощения с максимумом, расположенным в интервале 255—270 нм (в зависимости от нуклеотидного состава). Однако спектры поглощения нуклеино- [c.222]

    В связи с установлением трехмерной структуры гистонового октамера (Н2А-Н2В-НЗ-Н4)2 и его стерических взаимоотношений с ДНК встает ряд вопросов принципиального порядка. Например, каковы механизмы и причины спонтанного возникновения белкового комплекса и самосборки нуклеосомы в целом Не менее интересен и вопрос о том, каким образом происходит освобождение нуклеотидной цепи от гистонового кора Дело в том, что доступность ДНК, входящей в состав нуклеосом, существенно ограничена на тех участках, где двойная спираль соприкасается с поверхностью октамера. Присоединение специфических регуляторных белков к функционально активным нуклеотидным последовательностям становится возможным только при освобождении соответствующих участков связывания ДНК от нуклеосом. Поэтому выяснение причины распада нуклеопротеиновых комплексов столь же важно, как и исследование причины их возникновения. Можно полагать, что после того, как механизм создания и разрушения нуклеосом получит свою количественную трактовку, будет решен и один из наиболее интригующих вопросов, касающихся гистоновых белков, а именно, почему гистоны Н2А, Н2В, НЗ и Н4 в отношении своих аминокислотных последовательностей являются самыми консервативными в природе белками (табл. 1.7) Не исключено, что нуклео-сома представляет собой уникальную по своей структурной организации клеточную субъединицу. Из общих соображений очевидно, что в ней должны сочетаться идеальная согласованность внутри- и межмолекулярных взаимодействий белков, образующих гистоновый октамер, комплементарность поверхности нуклеосомного кора контактной поверхности суперспирали ДНК и в то же время наличие тонкого баланса сил противоположной направленности, нарушение которого при соответствующих изменениях внешних условий ведет к быстрому смещению равновесия в сторону возникновения или распада нуклеопро-теинового комплекса. Консервативность гистонов Н2А, Н2В, НЗ и Н4 указывает на то, что нормальное функционирование такой системы практически исключает аминокислотные замены. [c.112]


Смотреть страницы где упоминается термин РНК взаимодействие нуклеотидный состав: [c.579]    [c.633]    [c.64]    [c.39]    [c.39]    [c.577]    [c.168]    [c.78]    [c.102]    [c.102]    [c.70]    [c.78]   
Биохимия растений (1968) -- [ c.199 ]




ПОИСК







© 2025 chem21.info Реклама на сайте