Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Применение ионитов различных форм

    Природная глина является продуктом коагуляции, проходящей в геологическом масштабе. В глинистых суспензиях коагуляция в различных ее формах также является доминирующим состоянием. Соответственно все процессы приготовления, обработки и применения буровых растворов направлены по пути ослабления коагуляции (пептизация и разбавление), ее сдерживания или предотвращения (стабилизация, коллоидная защита), регулирования (ингибирование) или усиления (электролитная, температурная агрессия, концентрационное загущение). Эти изменения смещают равновесие в сторону усиления или ослабления связей между глинистыми агрегатами, влияют на их лиофильность и дисперсность. В результате устанавливаются промежуточные равновесные состояния, которые и определяют технологические показатели буровых растворов. Таким образом, все протекающие в них изменения являются различными формами единого коагуляционного процесса, управляемого общими. закономерностями системы глина — вода, в которой этот процесс реализуется, и его физико-химическим механизмом. Проявлением этого механизма является модифицирование твердой фазы путем поверхностных реакций замещения и присоединения, включающих в себя гидратацию, ионный обмен и необменные реакции. Такого рода модифицирование, осуществляемое обработкой химическими реагентами, определяет уровень лиофильности системы, сдвигая его в должном направлении. При этом получают развитие факторы, влияющие на дисперсность, — набухание, пептизация или, наоборот, структурообразование и агрегирование. [c.58]


    Рассмотрены проблемы, возникающие при разработке методов очистки сточных вод методы определения примесей (цианиды, хлорорганические вещества и др.), методы извлечения из воды взвешенных частиц, микроводорослей и вирусов, способа удаления биогенных элементов, в частности фосфора, условия равновесия в воде различных форм ионов. Рассмотрена эффективность применения для очистки сточных вод активного угля, торфа, смеси гуминовых кислот и летучей зоны. Обсуждены методы дезинфекции и дехлорирования. Рассмотрено влияние различных факторов на интенсификацию процесса обработки биологических осадков. [c.4]

    Рассмотренные три способа не могут дать удовлетворительного результата, если ионы очень мало различаются по свойствам и поглощаются ионитом почти одинаково. В этом случае эффективного разделения можно достичь, применяя метод ионообменной хроматографии с комплексообразователем, дающим с разделяемыми ионами комплексные соединения различной прочности. -Рассмотрим суть этого метода на примере разделения ионов редкоземельных элементов с применением лимонной кислоты в качестве комплексообразователя. Разделяемым катионам дают поглотиться в верхней части катионитовой колонки (сульфокатионит в ЫН4- или Н-формах). Затем через колонку пропускают растворы нитратного буферного раствора (лимонная кислота + гидроксид аммония), имеющие разные pH. При этом поглощаемые катионы образуют нитратные комплексные отрицательно заряженные анионы, прочность которых (и, следовательно, вымывание из катионитовой колонки) определяется pH и концентрацией цитратного буферного раствора. Так создаются условия для дифференциального вымывания поглощенных катионов. Чем прочнее образующийся комплексный анион, тем легче вымывается катион из колонки. [c.690]

    Вывод Эмиля Фишера [20] о том, что вальденовское обращение, по-видимому, представляет собой весьма общее явление, которое тесно связано с природой процессов замещения , время от времени и в различной форме делали затем многие авторы [39, 46, 69]. Его применение к некоторым простым системам было иллюстрировано рис. 8.3 и 8.4, где было отмечено, что замещение на анион приводит к обращению конфигурации и, как следствие этого, изменению знака оптического вращения, тогда как при замещении на катион конфигурация и оптическое вращение остаются неизменными. Получен ряд экспериментальных подтверждений того, что скорость, с которой отрицательный ион реагирует с молекулой, имеющей асимметрический насыщенный атом углерода, и скорость оптической инверсии одинаковы. [c.247]


    В масс-спектрометрии используются различные другие типы ионных источников, но лишь немногие из них представляют интерес для химического. анализа и поэтому будут рассмотрены очень кратко. Первым источником получения положительных ионов был электрический разряд в газе при низком давлении [765] этот принцип используется до настоящего времени [604], несмотря на то, что его применение, в простейшей форме, ограничивается ионизацией соединений, имеющих достаточную упругость пара при нормальной температуре. Ограничение может быть снято, если твердое вещество, подлежащее [c.134]

    В настоящем сообщении описано применение метода ионного обмена для качественного определения различных форм одного и того же элемента в растворе в условиях крайнего разбавления. [c.187]

    Применение ионного обмена к изучению состояния радиоэлементов в растворе позволяет разрешить ряд вопросов 1) в какой форме находится интересующий нас элемент — ионной или коллоидной 2) в каких количественных соотношениях содержатся эти формы радиоэлемента в растворе 3) образует ли данный радиоэлемент в растворе комплексные формы 4) каковы состав и доли различных комплексных форм в растворе и какова прочность этих соединений 5) имеются ли в растворе гидролизные и полимерные формы соединений радиоэлементов. [c.586]

    С применением различных физико-химических методов (спектроскопия, определение диэлектрической проницаемости, титрование в органических растворителях) было доказано, что в водных растворах, так же как и в кристаллах, аминокислоты сушествуют в виде биполярных ионов, или цвиттер-ионов. Молекулярная форма аминокислот в основном характерна для неводных растворов — в растворителях с низкой диэлектрической проницаемостью. [c.45]

    Ионообменные макропористые смолы нашли применение и в жидкостной хроматографии неионных органических соединений, в частности для разделения различных дизамещен-ных бензолов. Большое влияние на объем элюирования компонентов и форму пиков оказывает степень сшивки и величины иона в смоле [117]. [c.21]

    Применение катализатора с малой площадью поверхности облегчает выбор типа катализатора и обработку его поверхности различными способами. Для наблюдения за скоростью реакции удобно применять масс-спектрометр. Тип реакционной камеры зависит от особенностей реагентов. На рис. 13 показана реакционная камера, которая была использована для изучения реакции гидрогенизации этилена на поверхности катализатора, имевшего форму тонких листочков с общей площадью от 1,5 до 2 см . Возможность загрязнения была сведена к минимуму благодаря отделению реакционной камеры от остальной части установки системой холодных ловушек и металлических вакуумных кранов, которые можно было прогревать. Для перемещения катализатора из точки А, где он очищался посредством бомбардировки ионами аргона, в точку В, где определялась его активность, применяли держатель, управляемый с помощью магнита. Во время очистки затвор можно было передвигать в такое положение в трубке дегазации, что он ограничивал местонахождение образующейся при очистке пленки этой трубкой. За исключением маленького крючка из вольфрамовой проволоки В, в том отсеке камеры, где происходила реакция, не было никакого другого металла, кроме катализатора. Чтобы реакция не протекала в горизонтальном отсеке установки, где находится ввод А и где во время очистки образуется металлическая пленка, его при проведении реакции помещали в баню с сухим льдом и ацетоном. [c.345]

    Энергия — основная физическая величина. Математический аппарат большинства разделов теоретической физики, включая термодинамику, основан на различных формах закона сохранения энергии. Однако важнейшая особенность макроскопических систем, которые рассматриваются в термодинамике, состоит в том, что энергию макроскопической системы невозможно непосредственно измерить. Различные физические методы позволяют только определять изменения энергии отдельных частиц системы — атомов, молекул, ионов. Однако не существует никаких методов непосредственного измерения энергии системы как целого. Изменение энергии макроскопической системы определяют в виде теплоты или работы. Первоначально они рассматривались независимо. Поэтому для макроскопической системы сам факт существования внутренней энергии макроскопической системы как некоторой физической величины удалось установить только в середине XIX в., причем для этого потребовалось открыть ранее неизвестный закон природы — первое начало термодинамики. Впоследствии возникла необходимость использовать и другие неизмеряемые величины — энтропию, химический потенциал и т. п. Широкое применение в математическом аппарате термодинамики непосредственно не измеряемых величин является особенностью термодинамики как науки и сильно затрудняет ее изучение. Однако каждая неизмеряе-мая величина в термодинамике точно определена в виде функций измеряемых величин и все окончательные выводы термодинамики можно проверить на опыте. При этом для описания свойств системы используют специальные термодинамические переменные (или термодинамические параметры). Это физические величины, с помощью которых описывают явления, связанные с взаимными превращениями теплоты и работы. Все это макроскопические величины, выражающие свойства больших групп молекул. Не все эти величины можно непосредственно измерить. [c.6]


    В волокнистых минералах силикатные ионы, имеющие форму тетраэдров, сконденсированы в очень длинные цепи. Такие кристаллы легко могут расщепляться в направлениях, параллельных силикатным цепям, но не раскалываются в поперечных направлениях. Именно поэтому кристаллы таких минералов исключительно легко распадаются на волокна. Наиболее важными минералами этого типа являются тремолит Са2Мд5318022(0Н)2 и хризотил Mg6Si40п(0H)6 H20 их называют асбестами. Залежи этих минералов в пластах, достигающих толщины 10 см и более, открыты, в частности, в Южной Африке. Добытый асбест расщепляют на волокна, из которых вырабатывают войлок, картон, пряжу, ткань и различные изделия, обладающие теплоизоляционными и огнеупорными свойствами благодаря этим свойствам асбест находит применение как конструкционный материал. [c.534]

    Такие газы как СО , H S, С1 , H I, SO , NH и другие могут переходить в воде в диссоциированные частицы. Вопрос о соблюдении закона Генри в этом случае усложняется. Перешедшие в воду молекулы газов существуют в ней в разных формах. Часть молекул остается в растворенном состоянии, часть переходит в соединения с водой или в ионы. Для установления количества газа, находящегося в различных формах, требуется применение сложных методов исследований, которыми обычно не пользуются. Под содержанием растворенного в воде газа обычно по-нима( т общее перешедшее в воду количество газа, независимо от того, в каких формах газ существует в воде. В этом случае коэффициент Генри, относящийся к общей стехиометрической концентрации газа в воде, может стремиться к нулю при достаточном разведении. Такое поведение коэффициента Генри проявляется только в отношении общей концентрации газа, содержащегося в воде во всех формах (диссоциированных и недиссоциированных). Разведение смещает равновесие в сторону образования диссоциированных форм. При большом разведении основная часть растворенного вещества переходит в диссоциированное состояние и концентрация недиссоциированиой формы уменьшается по сравнению с концентрацией диссоциированных форм. В отношении недиссоцииро-ванной формы закон Генри может практически соблюдаться при достаточно малых концентрациях и отношение летучести компонента в газовой фазе к молярной доле этого компонента в жидкой фазе будет оста- [c.125]

    Применение ионоселективных электродов позволяет проводить раздельное определение смесей сульфид-, тиосульфат- и сульфит-ионов [906], проводить последовательное титрование сульфидной и растворенной серы в растворах полисульфида [907], различных форм серы (8 , SjOr, sor, S ) в продуктах производства сульфатной целлюлозы [1182]. [c.140]

    Влияние замещающих катионов Са +, Mg2+, Fe + и частично декантированого цеолита NaX на количество сорбированного им фторида бора. Каталитические свойства различных форм природных и синтетических цеолитов и их модификаций сильно зависят от их строения и состава. Известно [209], что натриевые формы цеолитов типа А, X или У каталитически малоактивны в реакциях превращения углеводородов, в частности в реакциях алкилирования. В работах [230, 231, 217, 218] было показано, что аморфные алюмосиликаты, сорбировавшие фторид бора, проявляют высокую активность в реакциях алкилирования. В связи с этим важно изучить влияние содержания двух- и трехвалентных ионов, замещающих Na+в цеолите NaX, на хемосорбцию им фторида бора с последующим исследованием каталитических свойств полученных цеолитов в реакциях алкилирования. Для исследования был использован синтетический цеолит типа NaX без связующего, полученный с опытного завода ГрозНИИ. Катионный обмен проводили с применением растворов хлоридов кальция, магния и железа (III) различных концентраций. Долю обмена [c.193]

    Для определения концентрации (относительного содер-ж.зния) изотопов в данной пробе применение масс-спектрометра оказалось наиболее плодотворным. Как уже говорилось, принцип действия этого прибора состоит в том, что исследуемый элемент вводится обычно в форме какого-либо подходящего соединения в ионный источник масс-спектрометра и ионы с различной массой разделяются под действием электрического и магнитного полей. Отношение концентраций изотопов определяется при этом путем измерения отношений ионных токов на выходе из прибора, соответствующих ионам различной массы. На рис. 6 изображена экспериментальная кривая, полученная при изотопном анализе двуокиси углерода. Отношение высот пиков с абсциссами в 44 и 46 а. е. м. позволяет, например, определить [c.19]

    Нашей целью давно уже является использование структур Б качестве руководства для синтезов, и в какой-то небольшой мере это оказывается возможным. Однако иногда применение сведений о структурах приводит к неожиданным результатам, которые ясно указывают на ограниченность этих сведений. Например, катионы диалкилолова только что обсужденного типа должны были бы осаждаться с силикатными анионами высокомолекулярного веса, образуя полимерные оловоорганические силикаты. При добавлении водного раствора хлорида диметилолова к силикату натрия действительно выпадает белый осадок [10], но детальное изучение показало, что он представляет сооса-жденную гидроокись кремния и полимерную окись диметилолова. Особенности кремний-кислородной связи обусловливают исключение больших катионов диметилолова в общем следует сказать, что существует очень малая или совсем не существует совместимость кремния и силикатов с металлоорганическими окисями, даже если соответствующие окислы металлов легко растворяются в этих силикатах. Более того, кремний и неорганические силикаты оказываются полностью нерастворимыми в полимерных силиконах, а это показывает, что связь кремний — кислород может принимать несколько в корне различных форм, которые невозможно объяснить, исходя из старых понятий ионно-ковалентного дуализма. Одна из наиболее насущных задач — это элементарное понимание различия в связях кремний — кислород в представлениях молекулярно-орбитальной теории, так что мы должны сделать соответствующие подразделения в этой важной области. [c.68]

    Осаждение сульфата бария используется в методах качественного обнаружения особенно многообразно применение этой реакции в методах количественного определения сульфатов. Издавна BaS04 используют в качестве осаждаемой и весовой формы при гравиметрическом определении сульфатов. На выделении осадка BaSOi из раствора основаны методы кондуктометрического и высокочастотного титрования, потенциометрического титрования с ионоселективными электродами, различные методы комплексонометрического определения SOi с многочисленными органическими металлоиндикаторами и методы фотометрического титрования сульфат-ионов. Многообразны варианты нефе-лометрического определения сульфатов, а также методы фотометрического определения, основанные на разрушении комплексов металлов о освобождением окрашенного неорганического или органическою лиганда в присутствии сульфат-ионов. [c.29]

    Новые возможности, открываемые ионитами, связаны с обменными реакциями ионогенных групп, однако, характер и направленность реакций обмена могут быть существенно различными и, соответственно, использоваться для различных целей. К самым простым реакциям обмена относятся взаимодействия, при которых содержащийся в ионогеиной группе противоион обменивается на другой, ему эквивалентный. Более сложно взаимодействие, при котором противоион обратимо участвует в реакциях обмена на поверхности ионита (или в микропорах гелевого ионита) с сорбированными веществами противоион при этом в реакционный объем не выходит. И, наконец, возможно сочетание указанных реакций, т. е. такие взаимодействия, при которых в результате обычного ионного обмена образуется новая форма ионита с новым противоионом, способным вступать во взаимодейетвия по второму пути или участвовать в еще более сложных реакциях. Именно все эти свойства ионитов находят применение в различных процессах органической технологии. [c.289]

    Изучению возможностей аналитического применения азосоединений 8-оксихинолина посвящено относительно большое число исследований. Вместе с тем, если не считать работу Рамаяка и Сундарарамена [1], кислотно-основные равновесия в растворах этих веществ не были до сих пор предметом специального изучения. Однако в последнее время вопросы, связанные с состоянием в растворе органических лигандов, вступающих в реакции комплексообразования с ионами металлов, привлекли особое внимание исследователей. Это связано с тем, что рационально управлять процессами комплексообразования, имеющими аналитическое значение, можно только в том случае, если существует ясное представление о структуре различных форм реактивов и о равновесных концентрациях этих форм в зависимости от pH среды. [c.131]

    Данное сообщение имеет целью обсуждение термодинамической устойчивости различных форм гидратированных протонов путем расчета их свободных теплосодержаний гидратации AZ и сопоставления их с опытной величиной. Опытной величиной свободного AZon теплосодержания гидратации мы называем величину, полученную из термохимических опытных данных при помощи соотношения AZ = ЛИ — TAS. Величина АН из опытных термохимических данных определена Мищенко 19]. Она оказалась равной при 25 —263 ккал. В расчетах Мищенко использовалось хорошо обоснованное предположение о равенстве теплот гидратации ионов 1" и s". Мищенко показано, что применение этого предположения и расчетах других исследователей также приводит к величине теплоты гидратацци протонов при 25 равной—263 ккал. Значение энтропии гидратации определено в ряде работ. Нами использовано значение ASr = —38,6 взятое из работы 110]. Опытная величина свобод-11010 теплосодержания, вычисленная из этих данных составляет 251,5 ккал. Электростатическая теория гидратации иоиов за последние годы получила дальнейшее развитие в работах Мищенко п Сухотина, Дракипа и Михайлова, Лейдлера и Пегиса и в др. работах [1]. Расчет гидратации протона в этих работах ие приводился. В наших расчетах использован метод, применявшийся Мищенко п Сухотиным, представляющий дальнейшее развитие работ Бернала и Фаулера. Этот метод представляется нам наиболее строгим, т. к. оп использует положения электростатики и термодинамики. В наших расчетах в качестве исходного состояния принимаем протоны в виде идеального газа с Р-= 1 атм. В качестве конечного состояния принимаем водный раствор протонов с активностью а = с = 1 моль/литр. Воображаемый обратимый процесс гидратации осуществляем через стадии 1. изотермическое обратимое испарение п молей НгО, необходимых для образования [c.110]

    Применение ионного обмена для очистки органических ионов от примеси неионизирующихся органических соединений, от минеральных веществ или в процессах разделения сложной смеси органических электролитов привело к созданию многочисленных ионитов различного состава и различной структуры. Такое многообразие ионообменных поглотителей не случайно, оно продиктовано необходимостью тщательного подбора ионита по составу, макро-молекулярному строению и даже по форме (гранулы определенного размера, пленка, волокно) в зависимости от состава исследуемой смеси, от выбранного способа ее разделения, от условий проведения этого процесса. [c.7]

    Информация о форме молекул может быть получена при измерениях осмотического давления только из второго вириального коэффициента. В связи с этим второй вириальный коэффициент заслуживает более внимательного изучения. Было выполнено теоретическое исследование термодинамики трехкомпонентных систем со специальным приложением к осмотическому давлению [268, 269]. Задавая состав противоионов макромолекулярного комнонента так, что изменение их концентрации не приводит к изменению концентрации диализуемых ионов, получили уравнение, в котором В является суммой трех членов. Первый из них — это член равновесия Доннана, который становится несущественным, если концентрация эле тролита достаточно велика. Второй член характеризует взаимодействие макромоле-ку.тярного компонента с самим собой, и он прежде всего зависит от формы молекулы. Статистическая термодинамика позволяет оценить этот член для различных форм [13, 189]. Таким образом, если первый и третий члены малы или известны, можно сделать заключение о форме молекулы на основании измерения второго вириального коэффициента. Этот подход 61.1л применен для определения отношения осей молекулы миозина [270]. Обычно исключенный объем вычисляют, предполагая, что смешивание не сопровождается изменением объема или теплосодержания, иными словами, что парциальный удельны объем инвариантен относительно концентрации. Рассматривают только изменения энтропии. Таким образом, В можно рассматривать как сумму нескольких членов, один из которых не связан с изменениями объема нрг растворении. Более того, этот член будет велик, если лтолекула высоко асимметрична или представляет собой гибкое нитевидное тело. Молекулы такого типа исключают молекулы других находящихся в растворе веществ из объема, существенно превышающего собственный [c.93]

    Применение жидких амальгам дает хорошие результаты при переведении в низшие валентные формы ионов железа, ванадия, молибдена, урана и других металлоз С помощью различных амальгам (то же относится к твердым металлам) можно выполнять анализ растворов, содержащих несколько веществ, которые восстанавливаются при разных потенциалах. [c.368]

    Реакция протекает вправо при избытке кислоты. Ионит в колонке отмывают водой от избытка кислоты, после чего ионит готов к применению. Пробу пропускают через колонку, колонку промывают водой или элюентом. Собирают элюат целиком или по фракциям. Перед каждым последующим применением необходимо проводить регенерацию ионита в колонке, так как в колонке содержатся различные ионы (например, Х , Хг). Происходящий при этом химический процесс аналогичен описанному уравнением (7.4.5). Процесс замены ионов Х+ ионами Хь Ха. .. называют регенерацией ионита, чтобы подчеркнуть, что ионит при этом возвращается в свое исходное состояние. Для сдвига равновесия вправо необходимо подобрать нужную концентрацию кислоты. Концентрированные растворы повышают скорость ионного обмена, но из-за высокой вязкости раствора снижается диффузия ионов. Поскольку процесс ионного обмена протекает сте-хиометрически, можно рассчитать полную обменную емкость колонки, зная количество ионита. Но рассчитанную обменную емкость не всегда можно полностью использовать (разд. 7.3.1.1). Пусть в колонке имеется ионит в Н -форме. Требуется провести ионный обмен с ионами К" . В месте подачи анализируемой пробы в колонку происходит полный обмен ионов Н+ на ионы При дальнейшем пропускании раствора, содержащего ионы К (фронтальная техника проведения ионного обмена), происходит смещение зоны, заполненной ионами К" , вниз. При этом колонку можно разделить на три слоя (рис. 7.17). В первом слое находится ионит только в К" -форме, во втором слое — ионит, содержащий оба иона, в третьем слое — ионит, содержащий ионы Н" . Распределение концентраций происходит по 8-образной кривой (ср. с формой полос элюентной хроматографии). При дальнейшем пропускании раствора КС происходит зарядка второго слоя ионами до проскока. Число ионов К" , которые могут быть количественно поглощены колонкой до проскока ионов, называют емкостью колонки до проскока. Эта емкость меньше величины полной емкости колонки, так как проскок К" -ионов наблюдается в тот момент, когда в колонке еще содержатся Н+-ионы. [c.378]

    При низких напряжениях скорость дрейфа катионов столь незначительна, что только часть их достигает катода, а остальные рекомбинируют. Таким образом, в создании тока при низких напряжениях участвуют не все термически ионизированные атомы углерода, полученные при имеющейся степени ионизации. С увеличением напряжения доля рекомбинирующих ионов уменьшается до тех пор, пока все создаваемые носители заряда не будут достигать электродов. Эта зависимость ионизационного тока от напряжения на электродах может быть объяснена также образованием объемного заряда. При низких напряжениях происходит лишь сдвиг плотности заряда, так как создаваемые положительные ионы вследствие их существенно большей массы в сравнении с электронами медленно движутся к катоду и это приводит к образованию объемного положительного заряда. Благодаря противоположно направленному действию поля этого объемного заряда, возникающего у катода, ионизационный ток ослабляется. С ростом напряжения плотность объемного заряда уменьшается и ионизационный ток возрастает. В режиме насыщения ионизированные атомы углерода, число которых отвечает данной степени ионизации, так быстро достигают электродов, что объемный заряд не может образоваться. Напряжение насыщения зависит как от формы и положения электродов, так и от количества вещества, поступающего в пламя за 1 сек. Обстоятельные исследования этого явления провели Дести, Геч и Голдан (1960). На рис. 22 показаны изменения ионизационного тока при различных количествах вещества и ири применении сеточного электрода с собирающей поверхностью 0,8 см , отстоящего на расстояние 10 мм по вертикали от отрицательно заряженного сопла детектора (рис. 23). При положительно заряженном сопле напряжение насыщения примерно на 20 в выше, так как в этом случае путь положительных ионов к электроду длиннее. Линейный диапазон детектора при объемной скорости водорода 2 л-час ограничен потоком 2,5 10 г-сек . [c.131]

    Попытки изготовить калий-селективный стеклянный электрод до настоящего времени оказались безуспешными. Все сорта стекол, которые применялись для этих целей, оказались обратимыми и к другим однозарядным ионам. Такие электроды называют катион-чувствительньши. Чтобы перевести электрод из одной формы в другую, его обычно вымачивают длительное время в растворе, содержащем соответствующий ион металла, время от времени заменяя раствор. У катион-чувствительных стеклянных электродов коэффициенты селективности к различным ионам убывают в ряду НГ Ж" > Na" > NH4", Li", Rb", s" > a " и т.д. В отсутствие ионов натрия и калия (что бывает крайне редко) катион-чувствительные электроды достаточно хорошо реагируют на ионы NHt", Li", Tl", Си", Rb", s", Ag" и могут служить датчиками при потенциометрическом титровании этих ионов. Как и при применении натрий-чувствительных электродов, мешающее действие ионов Н" в этом случае устраняют, поддерживая концентрацию последних на низком уровне. [c.189]

    Заряженные частицы движутся в электрическом поле со скоростью, которая зависит от напряженности поля, от величины заряда каждой частицы, а также от ее формы и размеров (от которых зависит гидродинамическое сопротивление, оказываемое средой). Эти свойства могут быть использованы для разделения либо част1Щ с одинаковым зарядом, но различающихся размерами, либо частиц одинаковых размеров с различными зарядами. Область применения метода может быть расширена в случае необходимости путем изменения величины заряда мигрирующих частиц, изменением pH буфера, в котором проводится разделение (например, для аминокислот, оптимальное разделение которых зависит от pH), или путем образования комплексов (например, добавление борной кислоты к смеси сахаров). Термины электрофорез и ионофорез лучше всего использовать по отношению к разделению соответственно коллоидных и ионных частиц. [c.26]

    Арсенат-ион реагирует с молибдатом с образованием двух гетерополикислот — бесцветной а-формы и желтой р-формы. Спектры светопоглощения обеих форм представлены на рис. 2. В водных растворах всегда сначала образуется а-форма молибдомышьяковой гетерополикислоты. При концентрации молибдата 0,1 М и концентрации минеральной кислоты более 0,5 N в присутствии арсената через 30 мин. появляется желтая окраска, достигающая максимума в течение нескольких дней. Процесс перехода бесцветной а-формы в окрашенную р-форму может быть ускорен нагреванием, при этом возможно выделение осадка, вследствие чего такая модификация метода не находит аналитического применения. В связи с этим для использования реакции образования желтой молибдомышьяковой кислоты для определения мышьяка исследовались различные факторы, ускоряющие переход бесцветной а-формы молибдомышьяковой гетерополикислоты в окрашенную р-форму. [c.53]

    Кислородсодержащие экстрагенты, имеющие кислотные группы, часто называют жидкими катионообменниками. Из широко распространенных кислотных экстрагентов наибольшей селективностью при экстракции катионных форм элементов обладают фосфорорганические кислоты. Существенные различия в экстрагируемости в данном случае проявляются как для катионов с различной величиной заряда, так и для катионов, отличающихся только размерами ионных радиусов. Например, типичный экстрагент этого класса ди-2-этилгексилортофософорная кислота (Д2ЭГФК) обеспечивает возможность разделения таких близких по химическим свойствам элементов, как лантаноиды и актиноиды. Среднее значение для соседней пары этих элементов превышает 2. Селективность экстракции карбоновыми кислотами значительно ниже, поэтому в общем случае их применение более оправдано для суммарного концентрирования катионных форм элементов, чем для их разделения. Подробные сведения о кислотных экстрагентах и их свойствах можно найти в работе [39]. Данные по экстракции элементов из солянокислых растворов Д2ЭГФК приведены в [1]. [c.161]

    В основу работы колориметрического кулонометра могут быть положены реакции получения или разложения различных веществ. Хорошие результаты получены с применением перманганата калия, комплексного соединения меди с триэтаноламином и ряда визуальных индикаторов, чувствительных к изменению концентрации ионов водорода в растворе в результате электролиза воды. В качестве таких визуальных индикаторов пригодны тимоловый С1ШИЙ, нейтральный красный, ортокрезоловый красный и др. Выбирая подходящий светофильтр, пропускающий свет с длиной волны, соответствующей максимуму поглощения диссоциированной или недиссоциированной форм индикатора, можно в очень большой степени повысить чувствительность кулонометра. Перед началом работы кулонометр калибруют. Для этого через него пропускают ток известной величины (при хорошей стабилизации тока можно измерять его прецизионным микроамперметром) в течение определенных отрезков времени. Затем снимают пока- зания колориметра и на основе полученных данных строят график зависимости оптической плотности раствора (или пронускаемости) [c.17]

    В данной монографии рассматриваются основы этого подхода и применение его к различным проблемам теоретической и синтетической органической химии. Быстрое развитие этой области науки, как и многих других, меняет традиционную форму монографии капитальные обзоры уступают место сборникам обзоров по отдельным проблемам, охватывающим современное состояние теории. К этому типу книг относится и представляемая на суд читателей. Отдельные главы книги написаны крупными специалистами в своих областях, что позволяет читателю получить новые идеи из первых рук . Естественно, что главы не равноценны по своей значимости, широте и охвату материала и даже по стилю изложения кроме того, в книге содержится явно нетрадиционный для химика-органика материал (4ютохимия, расчеты поверхностей потенциальных энергий, ион-молекулярные реакции и т. д.). Однако в целом данная монография дает полное представление о современном подходе к проблемам реакционной способности органических соединений, и актуальность проблем, затронутых в книге, не вызывает сомнений. Можно надеяться, что это издание будет с интересом встречено нашими химиками. [c.6]


Смотреть страницы где упоминается термин Применение ионитов различных форм: [c.613]    [c.75]    [c.172]    [c.203]    [c.13]    [c.133]    [c.201]    [c.61]    [c.159]    [c.280]    [c.433]    [c.224]    [c.102]    [c.140]    [c.319]    [c.32]    [c.243]   
Смотреть главы в:

Очистка газов -> Применение ионитов различных форм




ПОИСК





Смотрите так же термины и статьи:

Иониты ионная форма

Формы применения ПАВ



© 2025 chem21.info Реклама на сайте