Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Замещение нуклеофильное мономолекулярное влияние растворителя

    В отношении стадий, определяющих скорость реакции, механизм нуклеофильного замещения весьма близок к механизму р-элиминирования. Так, скорости мономолекулярных 5м1- и Е]-реакций контролируются одной и той же стадией, а у бимолекулярных 5к2- и Ё2-реакций аналогичны стадии переноса электрона от реагента к уходящей группе они различаются лишь тем, что в реакциях элиминирования электроны проходят по большей цепи атомов углерода. В этой связи неудивительно, что для описания влияния растворителей на мономолекулярные (5.20) и бимолекулярные (5.21) реакции р-элиминирования с различной судьбой зарядов при активации Хьюз и Ингольд предложили правила, аналогичные правилам, используемым для оценки эффектов растворителей в 5м1-реакциях [16, 44] (см. табл. 5.6). [c.212]


    Из схемы (4.13) и вышесказанного следует, что с ростом силы водородной связи (либо вообще электрофильных влияний на X) возрастает тенденция к 8 1-реакции [69]. Образующийся карбкатион R стабилизуется нуклеофильным центром протонного растворителя. Таким образом, эти растворители благоприятствуют мономолекулярному нуклеофильному замещению, являясь достаточно кислыми (способствующими ионизации) и полярными (способствующими диссоциации). Нуклеофильное взаимодействие с протонным растворителем может принять характер [c.169]

    Эти аргументы и допущения могут быть использованы для качественного предсказания влияния полярности растворителя на скорость всех гетеролитических реакций, механизм которых известен. Для нуклеофильного замещения главными факторами являются тип заряда и механизм. Прежде всего рассмотрим бимолекулярный механизм. В случае мономолекулярного механизма непосредственное значение имеют исходное и переходное состояния в стадии, определяющей скорость реакции. Это иллюстрируется данными, приведенными в табл. 101. В трех средних колонках для каждого типа заряда [c.381]

    Чрезвычайно интересные результаты получили Хьюз и Инголд также при исследоваиии влияния растворителя на скорость мономолекулярного нуклеофильного замещения. Оказалось что скорость этой реакции определяется критической энергией ионизации системы, сильно понижающейся для жидкофазных превращений, поскольку при применении растворителя происходит медленная ионизация реагентов [129, стр. 252]. Степень растяжения поляризованной связи будет влиять на конфигурацию критического комплекса как моно-, так и бимолекулярного механизма замещения (развитие представлений Бьеррума о влиянии растворителя на скорость органических реакций [304]),тем более, что для любого механизма уменьшение энергии активации данным растворителем равно уменьшению энергии критического комплекса минус уменьшение энергии факторов (исходных соединений.— В. К-) [там же]. В свою очередь сольватация реагирующей системы будет расти с увеличением заряда критичес-ского комплекса по сравнению с исходными молекулами. При распределении же заряда одного из начальных реагентов мел<ду атомами критического комплекса сольватация такого комплекса уменьшается. Следовательно, при установлении действия растворителя на энергию активации и скорость реакции, по мнению авторов, необходимо сопоставить величину и распределение зарядов в критическом комплексе и исходных молекулах. Разумеется, что более значительное влияние на скорости реакций оказывают сильно ионизирующие растворители, чем малополярные соединения. [c.94]


    Это можно обосновать с точки зрения простых макрохимических, а вероятно, и молекулярных представлений. Во-первых, скорость бимолекулярного замещения пропорциональна концентрации атакующего агента, в то время как скорость мономолекулярного замещения обычно не пропорциональна этой концентрации. Поэтому изменение концентрации замещающего агента может изменить относительную скорость реакции по обоим механизмам. Далее, скорость мономолекулярного замещения часто гораздо сильнее зависит от ионизующей способности растворителя, чем скорость бимолекулярного замещения. Это особенно справедливо для реакций алкилгалогенидов например, муравьиная кислота, будучи сильно ионизующим растворителем, способствует реакциям мономолекулярного замещения даже в случае первичных алкилгалогенидов водный этиловый спирт и водный ацетон обладают меньшей ионизующей способностью, а безводные спирт и ацетон — еще менее ионизующие растворители. Иная картина, которая будет рассмотрена в разд. 3, а, наблюдается при разложении ониевых солей, когда оба реагента находятся в ионной форме скорость реакции бимолекулярного замещения в отличие от мономолекулярного весьма чувствительна к изменениям среды. Однако и для этих реакций, как и для реакций алкилгалогенидов, справедливо, что оба механизма значительно отличаются друг от друга по их зависимости от растворителя, природа которого может менять относительное значение обоих механизмов. Температура оказывает менее сильное влияние на механизм реакции. При определенной реакции в случае алкильной группы, расположенной близко к критической точке , в которой изменяется механизм реакции (т. е. в случае группы, тенденция которой к реакциям по одному из механизмов не проявляется достаточно четко), путем изменения условий реакций, в особенности концентрации реагирующих веществ и растворителя, можно добиться того, что преобладающим будет один из механизмов. Такие изменения легко осуществляются для реакций вторичных алкилга-логенидов. В слабоионизующих растворителях, например в спиртах, и при высокой концентрации активных нуклеофильных реагентов, например алкоголят-, азид- или тиолат-ионов, происходит бимолекулярное замещение однако в сильноионизующих растворителях, например в муравьиной кислоте, и при относительно небольшой концентрации активных анионов реакция протекает по мономолекулярному механизму, на что указывают кинетические и другие характеристики процесса. Короче говоря, вторичные алкил- [c.361]

    Такая реакция идет в две стадии. Она начинается с диссоциации галогеналкила на ионы под влиянием молекул растворителя. Скорость этой диссоциации чрезвычайно мала и определяет скорость всей реакции замещения. Образующийся при диссоциации карбониевый ион, и.меющий плоское строение, в дальнейшем быстро взаимодействует с реагентом или молекулой растворитатя (что более вероятно), образуя конечный продукт замещения, состоящий из равных количеств стереоизомеров (рацемат) (см. гл. VI, 5). При таком механизме реакции скорость замещения зависит исключительно от концентрации исходного галогеналкила и не зависит от концентрации реагента у = —X]. Такой механизм реакции называется мономолекулярным нуклеофильным замещением и обозначается символом 5 1. Реакциям с таким механиз.мом благоприятствуют больщая полярность растворителя и устойчивость карбкатиона, которая зависит от участия заместителя (алкильных групп) в распределении положительного заряда за счет - -/-эффекта этих групп. Чем больше водородных атомов в. метильной группе за.мещено на радикалы [например, в случае трет-бутила (СНз)зС— , тем равномернее распределение этого заряда по всем углеродным атомам карбкатиона и тем более стабилен этот ион. [c.90]


Смотреть страницы где упоминается термин Замещение нуклеофильное мономолекулярное влияние растворителя: [c.242]    [c.394]    [c.562]    [c.443]    [c.358]    [c.395]    [c.459]    [c.238]   
Теоретические основы органической химии (1979) -- [ c.241 , c.243 , c.289 , c.293 ]




ПОИСК





Смотрите так же термины и статьи:

Замещение нуклеофильное

Нуклеофильное замещение мономолекулярное

При мономолекулярная

Растворителей влияния на нуклеофильное замещение

Растворители нуклеофильные



© 2024 chem21.info Реклама на сайте