Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Неоднородность и поляризационном микроскопе

    Для полученного прививкой стирола на полиэтилен сополимера удалось показать наличие химической неоднородности путем нагревания образца до температуры выше его температуры плавления и исследования в поляризационном микроскопе. Макромолекулы, обладающие большими различиями в химической структуре, обычно обнаруживали несовместимость в расплаве и, следовательно, образовывали две фазы [31]. [c.303]


    Формирование древесных волокон происходит принципиально так же, как и формирование хлопкового волокна. Сначала образуется первичная клеточная стенка, представляющая собой тонкую оболочку. Эта оболочка имеет форму и размер волокна. Затем происходит отложение компонентов на внутренней поверхности первичной стенки. Первичная стенка утолщается без изменения внешних размеров волокна при этом образуется вторичная стенка (вторичный слой). Неоднородность клеточной стенки особенно заметна при исследовании в поляризационном микроскопе. Как видно на рис. 34, клеточная стенка состоит из трех слоев тонкого внутреннего слоя — так называемого третичного слоя е, [c.133]

    В каждом мышечном волокне в полужидкой саркоплазме по длине волокна расположено, нередко в форме пучков, множество нитевидных образований - миофибрилл (толщина их обычно менее 1 мкм), обладающих, как и все волокно в целом, поперечной исчерченностью. Поперечная исчерченность волокна, зависящая от оптической неоднородности белковых веществ, локализованных во всех миофибриллах на одном уровне, легко выявляется при исследовании волокон скелетных мышц в поляризационном или фазово-контрастном микроскопе. [c.645]

    Как правило, расплавы полиолефинов самопроизвольно кристаллизуются при температурах, ниже температуры плавления кристаллической фазы. Кристаллизация начинается из зародыша (центра кристаллизации), который может иметь как однородную, так и неоднородную структуру. Рост кристаллов происходит в радиальных нанравлениях от зародыша до тех пор, пока растущие образования не начнут сталкиваться друг с другом. Образовавшаяся таким образом структура называется сферолитной. Кристаллические сферолиты можно наблюдать в поляризационном оптическом микроскопе. [c.97]

    Интерференционно-поляризационная микроскопия для контроля качества оптически прозрачных сред с фазовыми неоднородностями. [c.515]

    Исследование в поляризованном свете проводилось на горизонтальном металлографическом микроскопе МИМ-8М. Для уменьшения неоднородности поляризационного эффекта за"" счет широкого, интервала углов падения при анализе применялся низкоапертурный ахромат-объектив (Р=23,2 А==0,17) и  [c.28]

    Соотношение (4) описывает поведение расплава, в к-ром первичные зародыши возникают исключительно в результате тепловых флуктуаций, а скорость образования зародышей определяется лишь темп-рой К. и не зависит от темп-ры расплава (т. наз. гомогенное образование зародышей). Однако в расплавах могут присутствовать гетерогенные образования — посторонние микровключения или нераспавшиеся агрегаты макромолекул. Особого внимания заслуживает гетерогенность, обусловленная упорядоченностью полимеров в аморфном состоянии и проявляющаяся во влиянии термич. предыстории расплава на кинетику его К. Такая собственная гетерогенность полимерных расплавов сохраняется при темп-рах, значительно превышающих темп-ру плавления. При наличии гетерогенности скорость образования первичных зародышей в значительной степени определяется скоростью адсорбции макромолекул на гетерогенных образованиях (т. наз. гетерогенное образование зародышей), и в этом случае в выражении (4) (АТ)- заменяется на (А7 )- . Однако притом и другом показателе степени кривая темн-рной зависимости скорости образования зародышей проходит через максимум при темп-ре, лежащей между темп-рами плавления и стеклования, при к-рых скорость образования зародышей равна нулю (рис. 1). Экспериментальное определение скорости гомогенного образования зародышей в расплавах полимеров представляет значительные трудности. Первые надежные результаты получены для полиэтилена, полиэтиленоксида и полипропилена с применением метода диспергирования расплава в жидких средах, позволяющего исключить влияние случайных неоднородностей. Этими опытами установлено, что, напр., капельки полиэтилена диаметром 2—9 мкм переохлаждаются значительно (А7 =55°), в то время как К- полиэтилена в блоке протекает практически мгно-вепно при значении А Г=25°. Менее надежные и неоднозначные результаты получаются обычно при определении скорости образования центров сферолитов с помощью поляризационного микроскопа. Анализ экспериментальных результатов проводится в соответствии с ур-ниями типа ур-ния (4) с учетом того, что при умеренных значениях АТ определяющую роль играет второй член ур-ния и потому в этой темп-рной области 1 I должен быть пропорционален АТ , где I равно 1 или 2 в зависимости гл. обр. от того, происходит ли го- [c.587]


    Двойное лучепреломление поливинилового спирта исследовалось на растянутых нитях. Для проверки однородности растяжения волокна вдоль оси растягивались две нити с нанесенными на них метками. Растяжение неоднородно по краям нитей и относительно однородно в середине-нитей. Неоднородность растяжения связана с условиями растяжения.. Двойное лучепреломление исследовалось при помощи поляризационного-микроскопа (при относительной вытяжке от 1 до 6) при различной температуре (Г) и влажности воздуха (/ ). Исследование проводилось при следующих условиях а) Т=30°, г=100% б) Г=30°, г=93% в) Г=20°, / =100% г) 7 =20°, г=93% д) Г=20°, г=81%. В случае а было изучено изменение двойного лучепреломления при одно-, двух-, трех- и четырехкратном нагревании образцов при температуре 140° в течение 5 мин. При увеличении числа прогреваний двойное лучеиреломление сперва увеличивается, а затем достигает насыщения. При большой вытяжке-насыщение достигается уже при однократном прогревании, а при двойной вытяжке такой результат достигается лишь при четырехкратном прогреве. В случаях б , в и г также было достигнуто насыщение после прогревания в течение 15—30 мин. Для непрогретых образцов двойное лучепреломление при данной степени вытяжки тем болыпе, чем выше температура и ниже относительная влажность воздуха. Равновесные значения двойного лучепреломления не зависят от температуры и относительной вла/кности. Авторы считают, что для роста двойного преломления должно иметься оптимальное количество влаги в волокне. Было установлено теоретическое соотношение мел<ду двойным лучепреломлением и дихроизмом волокон поливинилового спирта и измерены дихроизм, двойное лучепреломление и плотность поливинилового спирта, прогретого при 220—230° (при трех- и шестикратном удлинении) в 40%-м растворе-(ГЧН4)2804, при pH 4.0—9.1 в течение 30 мин., и вычислены степень молекулярной ориентации и кристалличность.  [c.60]

    Энергия, необходимая для деформации жидкого кристалла, столь мала, что даже малейшее возмущение, вызванное, например, пылинкой или неоднородностью поверхности, может сильно исказить структуру. Щоэтому, если жидкий кристалл поместить между стеклянными пластинками и наблюдать в поляризационный микроскоп, редко можно увидеть хорошо известные картины интерференции, появления которых следует ожидать, исходя из равновесных структур, представленных на [c.13]

    Академик Лебедев одним из первых практически применил схему поляризационного интерферометра для определения под микроскопом показателя преломления микроскопических зерен и оптических неоднородностей в оптических стеклах, а также в тонких биологических срезах. Затем модификация схемы Лебедева была использована в микрорефрактометре Захарьевского . Легко достигаемая с помощью этих приборов точность измерения 0,001 Я и даже выше в сочетании с простотой измерения недоступна для других методов исследования микрообъектов. [c.239]

    Изгиб или коробление происходят в направлении поверхности с большей усадкой. Разная усадка слоев с двух противоположных поверхностей может быть обусловлена неодинаковой интенсивностью сушки и неоднородной структурой материала. При формировании полимерных систем в виде тонких пленок на поверхности твердых тел в слоях толщиной 0,2 мкм, непосредственно прилегающих к поверхности твердого тела, возникает структура, существенно отличная по морфологии, размеру, плотности, концентрации связей, густоте пространственной сетки и другим параметрам от структуры остальных слоев. Эти данные были получены при применении методов эллипсомет-рии, ИКС, электронной микроскопии, поляризационно-оптического и др. [69—72]. При взаимодействии с подложкой происходит изменение не только структуры полимера, но и его физического состояния по толщине пленки. Так, например, при формировании покрытий из синтетических каучуков различного химического состава на поверхности стеклянных и металлических подложек с уменьшением толщины покрытий высокоэластические свойства их ухудшаются. Поэтому покрытия из таких каучуков толщиной менее 30 мкм не могут применяться в качестве эластичного подслоя, обеспечивающего релаксацию внутренних напряжений при формировании покрытий из жесткоцепных полимеров на таком подслое. В результате адсорбционного взаимодействия релаксационные процессы в граничных слоях становятся практически полностью заторможенными, а усадка их — незавершенной. Иные закономерности в изменении этих параметров выявлены для других слоев, и особенно для слоев, граничащих с воздухом. Изменение структуры и свойств этих слоев в процессе формирования свидетельствует о знали-тельной их усадке. [c.49]


Смотреть страницы где упоминается термин Неоднородность и поляризационном микроскопе: [c.590]    [c.114]   
Фракционирование полимеров (1971) -- [ c.303 ]




ПОИСК





Смотрите так же термины и статьи:

Микроскоп

Микроскопия



© 2025 chem21.info Реклама на сайте