Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Микроскоп металлографический

    Б. Подготовки поверхности для металлографического исследования. При этом в результате травления увеличивается оптический контраст между разнородными участками поверхности. Исследование результата травления под микроскопом (металлографический метод) дает возможность определить кристаллическую структуру слитка, фазовый состав его, степень однородности, выявить макро- и микродефекты, установить приблизительную ориентацию кристалла или зерен. [c.275]


    Инструментом исследования является металлографический микроскоп, который может быть в зависимости от цели исследования оснащен фотоумножителем или нет. Для исследования уголь измельчают и смешивают с расплавленной массой шеллака, после чего отшлифовывают поверхность сплавленного препарата. Рассмотрим бегло различные возможные методы исследования. [c.240]

    Размеры, форму и взаимное расположение кристаллов в металлах изучают металлографическими методами. Наиболее полную оценку структуры металла в этом отношении дает микроскопический анализ его шлифа. Из испытуемого металла вырезают образец и его плоскость шлифуют, полируют и протравливают специальным раствором (травителем). В результате травления выявляется структура образца, которую рассматривают или фотографируют с помош,ью металлографического микроскопа. [c.319]

    К вертикальным металлографическим микроскопам относятся микроскопы МИМ-5, МИМ-6 и МИМ-7. Микроскоп МИМ-6 дает увеличение от 60 до 660 и предназначен для визуального наблюдения непрозрачных микропрепаратов в обычном и поляризованном свете, в светлом поле, в прямом и косом освещении и для фотографирования. Аналогичные определения можно делать и на микроскопе МИМ-7. Кроме того, микроскоп МИМ-7 позволяет проводить исследования в темном поле. Они представляют собой комбинацию фотокамеры и микроскопа. [c.110]

    По такому же принципу градуируют окулярную шкалу и в металлографическом микроскопе, только в этом случае используется непрозрачный объект-микрометр. [c.115]

    Отечественной промышленностью выпускаются растные устройства КФ-3 для металлографического МИМ-8 и КФ-4 и КФ-5 —для микроскопов проходящего света. [c.123]

    К металлографическим микроскопам выпускается интерференционное устройство МИО-1. [c.123]

    Приборы металлографический микроскоп МИМ-7, маятниковый копер МК-0,5-1, воздушный термостат, шлифовальный круг (тонкий). [c.198]

    Дислокационные ямки травления в монокристаллах кремния с ориентацией (111) имеют вид трехгранной пирамиды с равносторонним основанием. При просмотре протравленной поверхности в отраженном свете дислокации представляют собой темные треугольники (рис. 61). Подсчет количества дислокаций производят при помощи металлографического микроскопа. Поверхность исследуемого образца просматривается в двух взаимно перпендикулярных направлениях. Для этого используют окуляр с координатной сеткой. Подсчитывают число ямок травления на пяти участках пластины и берут среднее арифметическое. Плотность дислокаций определяют по формуле [c.108]

    С помощью металлографического микроскопа достаточно точно могут быть определены толщины пленок и слоев отложений на металле. Для этого готовят поперечные разрезы, шлифованные и нешлифованные образцы (например, котельных труб) с пленками и отложениями. Наблюдение за объектами исследования проводится в отраженном свете обычно используют сухие объективы в сочетании с окуляром Гюйгенса с сеткой и шкалой. [c.223]


    Металлографический метод. Непосредственное измерение толщины покрытия исследованием под микроскопом поперечного шлифа с изделия — метод универсальный, не имеющий ограничений в сфере его применения в зависимости от материала и формы изделия. Этим методом можно точно определить структуру любого сплава между покрытием и основным металлом. [c.146]

    Металлографический метод нередко выполняет роль арбитражного в спорных случаях и зачастую служит для проверки точности других неразрушающих методов определения толщины покрытия. Используя обычную технику подготовки шлифов и оптические микроскопы, можно произвести измерения с точностью 1 мкм, а применяя метод косого сечения при изготовлении образцов,— с точностью 0,1—1,0 мкм. С помощью электронного микроскопа можно измерить еще более тонкие осадки. [c.146]

    Толщину толстых пленок (более 5000 А) можно определить методами, применяемыми для измерения пленок средней толщины, а также с помощью металлографического микроскопа, микрометром и другими измерительными инструментами. [c.13]

    Ультразвуковой контроль структуры и механических характеристик серых чугунов. Известно, что свойства серого чугуна в значительной мере определяются формой н размерами графитных включений. По существующим техническим условиям на ответственные детали из чугуна (например поршневые кольца, блоки цилиндров компрессоров специального назначения) необходимо проводить контроль величины графитных включений. Длительное время единственным методом определения величины графитных включений, применявшимся в заводской и лабораторной практике, был металлографический контроль при помощи металло-микроскопа. Как показали исследования [113, 123], структура основной металлической массы мало влияет на затухание и скорость распространения ультразвука в чугуне. На рассеяние ультразвука влияет размер частиц свободного графита (рис. 49). Влияние формы и размеров частиц свободного графита на рассеяние ультразвука в чугуне было использовано при разработке методики ультразвукового контроля величины графитных включений в чугунных изделиях [124]. [c.83]

    Металлографическое исследование структуры металла выполняли на образцах, вырезанных из пластин перпендикулярно направлению оси сварного шва. Шлифы просматривали под микроскопом при 100- и 1000-кратном увеличении, при этом изучали структуру металла сварного шва, зоны сплавления (околошовной) [c.96]

    Рабочую часть образца длн испытания подготавливают в виде шлифа длн металлографических исследований. Статическое или циклическое нагружение образца осуществляется на испытательных установках, снабженных длиннофокусным оптическим микроскопом, позволяющим помещать деформируемый образец в ванну с коррозионной средой, а между объективом микроскопа и исследуемой поверхностью устанавливать измерительный микрокапилляр. [c.43]

    Для металлографических исследований используют электронный и оптический микроскопы. С их помощью определяют характер и морфологию кристаллитов, строение поперечного среза осадков, непосредственно измеряют кристаллиты, выявляют поры, трещины, посторонние включе ния. [c.251]

    Для исследования сферолитов достаточно больших размеров можпо пользоваться оптическими микроскопами (поляризационным или металлографическим). [c.119]

    Металлографический метод, т, е. микроскопическое исследование шлифов по сечению пленки, позволяет обнаруживать слоистое строение пленки, определять типы соединений, образующих пленку и отдельные ее слои, размеры и форму зерен, их распределение и расположение в пленке и т. д. Специальная микропечь конструкции Н. И. Тугаринова (рис. 318) дает возможность наблюдать под микроскопом и фотографировать кинетику изменения микроструктуры окалины в процессе окисления металлов. [c.435]

    По ГОСТ 1763—68 глубина обезуглероженного слоя стальных полуфабрикатов и деталей определяется металлографическими методами М, М1 (метод карбидной сетки), М2 (метод Садовского), методом замера термоэлектродвижущей силы, методом замера твердости (Т) и химическим методом (X). По методу М просматривают деталь под микроскопом при увеличении 63-н150 по всему краю травленого (до четкого выявления всех структурных составляющих стали) шлифа, плоскость которого должна быть перпендикулярна к исследуемой поверхности полуфабриката или детали. Общая глубина обезуглероживания включает зону пол- [c.442]

    Исследуемый уголь измельчают, смешивают с расплавленной смолой (шеллак) и после охлаждения смеси полируют поверхность. Наблюдения проводят с помощью металлографического микроскопа, снабженного фотоумножителем [59]. Это устройство позволяет анализировать мацералы и составлять рефлектограмму. [c.58]

Рис. 69. Металлографический микроскоп, предназначенный для определения рефлекто-грамм Рис. 69. Металлографический микроскоп, предназначенный для определения рефлекто-грамм

    Микроструктурные исследования сварного шва, зоны термического влияния и основного металла проводились в исходно.м состоянии каждого образца и после циклических нагружений на металлографическом микроскопе Неофот . По полученным снимкам устанавливали количество, размеры и распределение структурных составляющих. [c.47]

    Структурные исследования образцов до и после ремонта сварного соединения проводились с помощью металлографического микроскопа марки ЭПИТИП-2. [c.97]

    Микроскопичеокие исследования на металлографическом микроскопе МИМ-8 и интерференционном микроскопе МИИ-1 позволили выявить детали микрорельефа поверхности кристаллов. [c.90]

    Присущая кристаллическим телам анизотропность на практике проявляется редко. Это объясняется тем, что многие из них представляют собой совокупность мельчайших, беспорядочно размещенных кристалликов. Это явление называется поликристалличностью, а тела, которым свойственна поликристалличность — по-ликристаллическими. Поликристалличность особенно характерна для металлов, в чем легко убедиться с помощью металлографического микроскопа. [c.38]

    К металлографической annapaiype, предназначенной для исследования непрозрачных объектов в отраженном свете, относятся следующие приборы вертикальные малогабаритные металлографические микроскопы горизонтальные микроскопы для различных исследований веществ при больших увеличениях специальные фотографические установки для изучения макроструктуры различных твердых предметов при небольшом увеличении специализированные микротвердомеры. [c.110]

    Горизонтальный металлографический микроскоп МИМ-8М предназначен для точных работ. Весь прибор ono [c.110]

    Низкотемпературный микроскоп — микроскоп, имеющий устройство для глубокого охлаждения образца. Из серийных приборов охладительные камеры установлены на микроскопах НМ-4 (Япония), Термопан (Австрия) и некоторых другадс. Созданы конструкции охладительных камер (до —196°С), приспособленные к обычным металлографическим и поляризационным микроскопам. Институтом машиноведения АН СССР разработаны конструкции низкотемпературных микроскопов для исследования изменения структуры материалов в процессе их одноосного статического нагружения и удара. [c.129]

    Выполнение работы. 1. Приготовить три рабочих раствора I, И и 1П. Раствор I приготовить сливанием равных объемов 0,25 н. раствора dS04 и 0,5 н. H2SO4. Растворы И и III приготовить из раствора I, добавив в него желатин, агар-агар, трибензиламин (или любой другой амин) или высший спирт в таком количестве, чтобы концентрация в растворах поверхностно-активного вещества была разная и равнялась от 0,25 до 1 г/л. 2. Повторить при заданной температуре с растворами I, II и III работу 70. 3. Вычислить фк, фп.к и Афк для гальванических элементов с растворами I, II н ПТ (см. работу 70). Сравнить их друг с другом. 4. Провести электролитическое осаждение кадмия из растворов I, II и III в течение 13--20 мин и плотности тока 5 мА/см . Рассмотреть, используя бинокулярную лупу или металлографический микроскоп, осадки, полученные на катоде при электролизе растворов 1, И и III. Сравнить структуру осадков. 5. Четко записать выводы. Для отчета использовать таблицу по форме, помещенной в работе 69. [c.214]

    Оборудование трубчатая однозонная печь горизонтального типа с рабочей температурой до 1200°С ( Изоприн — ЖКМ-30/700, ЛЭТО, СУОЛ-0,4.4/12 и т. п.) (возможно использование нестандартных печей с длиной рабочей зоны до 500 мм и диаметром 50—60 мм) кварцевая труба диаметром 30—50 мм, длиной 0,7 м со шлифом кислородный баллон с редуктором Pt—Pt/Rh — термопара и потенциометр ПП-63 для измерения температуры кварцевые держатели для пластин установка для анодного окисления установка для хлорного травления ХА-термопара универсальный источник питания УИП-1 с предметным столиком для определения электрической прочности SiOa измеритель параметров Л2-7 в комплекте с генератором ГКЗ-40 и манипулятором установка вакуумного напыления металлографический микроскоп (МИМ-7, МИМ-8М)  [c.129]

    Для определения пористости методом хлорного травления пластины кремния должны быть полированы с двух сторон для того, чтобы слой окисла равнол ерно покрывал обе повер хности. Держатель с пластинами помещают в печь, разогревают ее до 1000°С, затем закрывают реактор шлифом 3 и, открывая кран делительной воронки, регулируют поток хлора таким образом, чтобы через склянку Тищенко с серной кислотой проходило 1—2 пузырька в минуту. Травление проводят в течение 15 мин. Затем прекращают подачу хлора и извлекают пластину из реактора. Образец сначала осматривают, а затем исследуют на металлографическом микроскопе. Подсчитывают число растравленных отверстий в окисной пленке в поле зрения окуляра, й затем, определив площадь поля зрения при помощи объект-микрометра, рассчитывают плотность сквозных пор (см" ) в окисле по формуле N = п/5, где п — количество пор в поле зрения окуляра, 5 — площадь поля зрения, см . [c.135]

    Оборудование трубчатая двухтемпературная печь сопротивления, обеспечивающая нагрев зон до 450 и 600°С кварцевая ампула длиной 20—25 см с внешним диаметром 25 мм и толщиной стенок 1,5—2 мм установка для откачки и отпайки ампул две ХА-термопары приспособление для изготопления косого шлифа металлографический микроскоп (МИМ-7, МИМ-8) фторопластовый стакан и пинцет с фторопластовыми наконечниками. [c.145]

    Оборудование трубчатая диффузионная печь с рабочей температурой до 1200°С Pt—Pt/Rh-термопара кварцевая труба длиной 1 м, диаметром 40 мм со шлифом кварцевые держатели для пластин и источника бора приспособление для изготовления косого шлифа металлографический микроскоп, установка для измерения сопротивления четырехз.ондовым методом, осциллографйческая, установка для изучения вольт-амперных характеристик фторопластовая посуда, пинцет с фторопластовыми наконечниками сушильный шкаф (120°С). [c.159]

    Металлографическое (под микроскопом) исследование эвтектического сплава показывает, что он представляет собой. механическую смесь мельчайших кристаллов висмута и кадмия. Но неэвтектические (до-эвтектические и заэвтектические) сплавы содержат крупные кристаллы одного из металлов (висмута или кадмия), вкрапленные в сплошную массу эвтектики. [c.271]

    Толщину покрытия в настоящее время контролируют традиционными металлографическими способами с помощью обычного оптического и электронного микроскопов, автоматического анализатора изображения типа микровидеомат фирмы Оптон (ФРГ) и методом отпечатка индикатора на приборе Виккерса. В последние годы все больше применяют неразрушающие методы контроля с использованием вихревых токов (резонансный), термо-ЭДС, распространения и затухания квазиповерхностной волны (метод критического угла Рэлея ), [c.44]

    После охлаждения образцы по грани 8 х 35 мм шлифовали, исследовали их структуру на металлографическом микроскопе МИМ-8М и по методу Глаголева определяли объемное содержание связующего сплава по длине образцов. Распределение меди и кобальта по длине образцов исследовали методом локального рентгеноспектрального анализа на установке Микроскан-5 . Облучение образцов проводили электронным зондом длиной 1000 и шириной 2 мкм. Это позволило замерять усредненную интенсивность рентгеновского излучения исследуемых элементов и избежать влияния структуры сплава (зернистости) на измерение интенсивностей. Пять участков измерения интенсивностей располагались на грани 8 X 35 жж по линии, перпендикулярной продольной оси грани, расстояние между этими линиями составляло 0,5 мм. В образцах, контактировавших с расплавом кобальта, количественное содержание связующего металла находили также путем сравнения отношений интенсивностей кобальта и вольфрама (/со// у) с отношением интенсивностей этих элементов в эталонах. Абсолютная ошибка определения содержания кобальта составляла 0,5 об. %. Разность результатов определения содержания связующего металла по методике Глаголева и путем измерения отношений интенсивностей не превышала 0,8 об.%. [c.95]

    Сведения о химическом составе иногда можно получить с помощью рентгеновского или электронно-лучевого анализа поверхности покрытия или металлографическим исследованием щлнфа готового изделия (под микроскопом или при использовании электронного микроанализатора). [c.135]

    Механический участок должен иметь оборудование — токарные, фрезерные, строгальные и шлифовальные станки для обработки запасных частей и подготовки контрольных образцов для механических испытаний и металлографических исследований. Служба контроля качества оснащается оборудованием и приборами, например разрывной машиной ГМС-20 для прочностных и пластических испытаний металла маятниковым копром МК-ЗОА для испытаний на ударную вязкость микроскопами МИМ-7 и ММР-2Р для проведения металлографических исследований прибором для определения микротвердости фаз типа ПМТ-3 твердомерами типа ТП и ТК для определения твердости по Виккерсу и Роквеллу рентгеновскими переносными аппаратами типа РУП-120-5-1, РУП-200-4-1, РИНА-1Д, ИРА-2Д, МИРА-2Д, гамма-аппаратом с источником излучения цезий-137, которые позволяют просвечивать металлы и сварные соединения толщиной до 60 мм ультразвуковыми [c.40]

    Распределение легирующих элементов и кремния по толщине образца исследовали с помощью приставки электронно-зондового микроанализатора фирмы КОЯАК к растровому электронному микроскопу ТЕОЬ 18М 6400 при диаметре зонда не более 2 мкм. Анализировали образцы с известной микроструктурой после металлографического травления. Площадь сканирования для определения химического состава сталей составляла (50x50) мкм. [c.7]


Смотреть страницы где упоминается термин Микроскоп металлографический: [c.230]    [c.77]    [c.66]    [c.37]    [c.110]    [c.149]    [c.179]    [c.119]    [c.356]   
Основы физико-химического анализа (1976) -- [ c.84 ]

Кинетика гетерогенных процессов (1976) -- [ c.79 ]




ПОИСК





Смотрите так же термины и статьи:

Микроскоп

Микроскопия



© 2025 chem21.info Реклама на сайте