Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Вторичная стенка

Рис. 6.10. Схема строения клеточной стенки [56] а М- срединная платинка Р- первичная стенка - наружный спой вторичной стенки 2 - срединный слой вторичной стенки 3 - внутренний спой вторичной иенки 6 -поперечный разрез трахеиды сосны Рис. 6.10. Схема <a href="/info/1252664">строения клеточной стенки</a> [56] а М- срединная платинка Р- <a href="/info/1002069">первичная стенка</a> - наружный спой вторичной стенки 2 - срединный <a href="/info/1408859">слой вторичной</a> стенки 3 - внутренний спой вторичной иенки 6 -<a href="/info/221508">поперечный разрез</a> трахеиды сосны

    Микрофибриллы в клеточной стенке располагаются с различной степенью упорядоченности (см. 8.6.2). В первичной стенке образуется простая многослойная сетчатая структура с предпочтительной ориентацией микрофибрилл, меняющейся по толщине стенки. Формирование такой структуры осуществляется на стадии увеличения поверхности клетки и может происходить в результате растяжения клетки. Микрофибриллы откладываются на растущую поверхность стенки перпендикулярно оси растяжения, но по мере роста клетки их ориентация меняется. Степень изменения ориентации будет наибольшей у микрофибрилл наружной части растущей поверхности, где они будут иметь предпочтительную ориентацию вдоль оси растяжения, и уменьшается по мере перехода к внутренней части первичной стенки, где микрофибриллы преимущественно ориентированы в поперечном направлении. Кроме этого, в первичной стенке у многих клеток имеются продольные тяжи из параллельно ориентированных микрофибрилл. Вторичная стенка отличается более высоким содержанием микрофибрилл, которые располагаются в отдельных слоях параллельно друг другу под определенным углом к оси клетки. Таким образом, биосинтез целлюлозы должен обеспечить получение линейного гомополисахарида со сравнительно большой степенью полимеризации, образование целлюлозных микрофибрилл и их ориентацию в клеточной стенке. Это весьма сложный процесс, многие детали которого до сих пор неясны. [c.335]

    Клетки древесины сообщаются между собой через поры. Поры -это неутолщенные участки клеточной стенки. Пора не является свободным отверстием, так как в ней имеется тонкая мембрана (первичная стенка и межклеточное вещество), пронизанная мельчайшими отверстиями. В живых клетках через эти отверстия проходят тонкие нити цитоплазмы, соединяющие содержимое живых клеток в одно целое. Поре в оболочке одной клетки соответствует пора соседней клетки, то есть образуется пара пор (рис.8.6). Различают простые, окаймленные и полуокаймленные поры (пары пор). Простые поры (см. рис. 8.6, а) образуются в стенках двух смежных паренхимных клеток, а окаймленные поры (см. рис. 8.6, б) - в стенках двух смежных трахеид, располагаясь преимущественно на радиальных стенках у концов трахеид. Поздние трахеиды по сравнению с ранними имеют меньшее число пор меньших размеров (щелевидные поры). У окаймленной поры мембрана имеет в центре утолщение - торус, играющий роль клапана, который может перекрывать пору. Структура торуса отличается от структуры мембраны. Окаймление образуется нависающим выступом вторичной стенки. Оно может быть выражено четко или слабо заметно. Трахеиды с паренхимными клетками сердцевинных лучей сообщаются через полуокаймленные поры (см.рис. 8.б,в) в так называемых полях перекреста. Форма, размер и число пор в поле перекреста служат диагностическими признаками при определении хвойных древесных пород. [c.201]


    Первый наружный слой вторичной стенки 81 откладывается непосредственно на первичную стенку. Он иногда называется переходным, так как его структура является промежуточной между структурами первичной и вторичной стенки. Микрофибриллы целлюлозы в этом слое лежат параллельно друг другу под углом около 50° к оси волокна. Электронномикроскопические исследования показали, что слой 81 состоит из двух или более слоев с перекрестной фибриллярной структурой. [c.319]

    Типичная стенка растительной клетки (рис. 7) состоит из нескольких слоев. В ней различают первичную стенку, составляющую наружный слой клетки, и вторичную стенку, состоящую из внутреннего, среднего и внешнего слоев. В первичной стенке микрофибриллы не имеют определенной ориентации и переплетены в беспорядочную сеть. Во внешнем слое вторичной стенки они образуют два семейства параллельных линий, пересекающихся почти под прямым углом и образующих, таким образом, правильную ( декартову ) сетку. В среднем слое вторичной стенки микрофибриллы параллельны друг другу и почти параллельны оси цилиндра (фигуры, в грубом при- [c.152]

    Состав глюкоманнана во вторичных стенках древесины сосны подобен глюкоманнану в первичных клеточных стенках, в то время, как глюкоманнан, содержащийся в коре, содержал больше маннозы. Необходимо, однако, отметить, что эти данные следует рассматривать как приближенные, так как исходные препараты не были тщательно очищены. [c.316]

    Исследования трахеид и либриформа с помощью поляризационного и электронного микроскопа, а также рентгенографии позволили установить существование в клеточных стенках пяти концентрических слоев [39] наружной, или первичной, стенки и вторичной стенки. Вторичная стенка в свою очередь разделяется на три слоя, обычно обозначаемых 81, 82 и 5з. Кроме того, между первичными стенками соседних клеток располагается склеивающая их срединная пластинка (рис. 35). [c.318]

    Тонкая первичная стенка обычно состоит из неупорядоченной решетки микрофибрилл целлюлозы, заполненной гемицеллюлозами, а позднее и лигнином. Первичная клеточная стенка в молодых растущих клетках расширяется до тех пор, пока не прекратится рост их и не начнет откладываться вторичная стенка. [c.319]

    Детальное исследование распределения лигнина и полисахаридов в одревесневших клеточных стенках древесины ели и березы измерением интенсивности абсорбции тонкого пучка ультрафиолетовых лучей при прохождении их через прозрачный срез подтвердило преимущественное расположение лигнина в срединной пластинке и первичной стенке, а также частично в наружных слоях вторичной стенки [42, 43]. В срединной пластинке еловой древесины содержание лигнина достигает 73 /о, а во вторичной стенке — не более 16%. Отсюда следует, что полисахариды сосредоточены в основном во вторичном слое. Была сделана попытка измерить этим методом взаимное расположение целлюлозы и гемицеллюлоз. Для этого полисахариды вначале были превращены в окрашенные соединения, абсорбирующие свет. [c.320]

    Полисахариды. В растениях полисахариды участвуют в образовании клеточной стенки (структурные полисахариды) и, кроме того, используются для создания запаса связанного углерода и энергии (резервные полисахариды). Структурные полисахариды формируют срединную пластинку, первичную и вторичные стенки, различающиеся функциональным назначением, строением и составом. Клеточная стенка является природным полимерным композиционным материалом, в котором полимерная дисперсная фаза - микрофибриллы распределена в полимерной дисперсионной среде - углеводной матрице (матриксе). Следовательно, при биосинтезе полисахаридов должна одновременно закладываться и структура клеточной стенки. [c.334]

    Поскольку объем молодой древесины при отложении слоев вторичной стенки не увеличивается, на последующих стадиях ее развития в том же объеме должно отложиться около 40 г древесинного вещества. Между тем в заполняющем молодую ткань соке содержится только 6,8 г сахарозы и инвертного сахара. Таким образом, содержащегося в соке сахара недостаточно для формирования древесинного вещества и приток сока должен превышать в несколько раз объем сока, содержащегося во вновь образовавшихся клетках древесины и луба. [c.329]

    Слои вторичной стенки хорошо различимы на микрофотографиях, полученных в поляризованном свете, благодаря различной ориентации в разных слоях микрофибрилл целлюлозы (см. 8.6.2), обладающей вследствие кристаллической структуры двойным лучепреломлением. Слои 8 , 82 и 8з(Т) существенно различаются по толщине 8 и 8з(Т) тонкие, а 8а толстый и образует основную массу клеточной стенки. Во всех этих слоях уже преобладает целлюлоза. Слой 81 имеет толщину 0,1...0,3 мкм в зависимости от части годичного кольца (поздняя или ранняя) и древесной породы. Толщина слоя 82 составляет в среднем 2...6 мкм с колебаниями от 1 мкм (в ранней древесине) до 7...9 мкм (в поздней древесине). Слой 8з(Т) самый тонкий (0,1.. .0,2 мкм) строение его в значительной степени зависит от древесной породы. [c.216]


    Основная масса целлюлозы находится во вторичной стенке в слое Si [c.218]

    Структура целлюлозы во вторичной стенке по сравнению с первичной стенкой более совершенна как по степени кристалличности, так и по степени ориентации. [c.244]

    Минеральные компоненты, поглощаемые корневой системой дерева из почвы, по проводящим тканям поступают в ствол и крону, где распределяются между отдельными тканями. Необходимые для жизнедеятельности элементы накапливаются в запасающих, меристематических, выделительных и ассимиляционных тканях. Они могут присутствовать в виде солей, главным образом, карбонатов, оксалатов, фосфатов, силикатов и сульфатов, и быть связанными с компонентами древесины, например, с Пектиновыми веществами. Минеральные компоненты по толщине клеточной стенки распределяются очень неравномерно, концентрируясь в сложной срединной пластинке и в слоях, граничащих с полостью клетки. Поэтому в хвойных породах поздняя древесина, трахеиды которой имеют Массивную вторичную стенку, содержит меньше неорганических веществ, чем ранняя древесина. [c.528]

    Вторичная стенка. В ней сосредоточена основная масса вещества стенки. Она состоит из каркаса, построенного из микрофибрилл целлюлозы, образующих под различными углами к оси клетки спиральные слои наружный 5ь средний 5 и внутренний 5з. [c.280]

    На рис, 6.11 видно, что в древесине максимальное содержание лигнина обнаруживается в сложной срединной пластинке и неуклонно уменьшается во вторичной стенке от слоя 51, примыкающего к ней, к слою 5з, смежного с полостью клетки, [c.282]

    Толщина самой клеточной стенки варьируется в широких пределах от 1 до 10 мкм в зависимости от породы дерева. Клеточная стенка состоит из двух основных структурных частей первичной стенки Р и вторичной стенки 8. Первичная стенка - тонкий слой, являющийся в период увеличения поверхности клетки единственной оболочкой, заключающей в себя протопласт. Толщина первичной стенки 0,1...0,3 мкм. Этот слой состоит из целлюлозы, гемицеллюлоз, пектиновых веществ, белков и лигнина, откладывающегося в период одревеснения. Лигнин появляется сначала в первичной стенке в углах клетки, затем в межклеточном веществе и всей первичной стенке, после чего постепенно лигнифицируется вторичная стенка. Межклеточное вещество и первичные стенки двух смежных клеток тесно срастаются между собой, образуя срединную пластинку (сложную срединную пластинку Р + МЬ + Р ). [c.215]

    В волокнах сульфитной целлюлозы максимальное содержание остаточного лигнина в слое вторичной стенки 51, в слое он практически отсутствует, а к слою 5з несколько возрастает. [c.282]

    На рис, 6,12 показано, что если в сложной срединной пластине МР содержание лигнина далеко превосходит содержание целлюлозы и гемицеллюлоз вместе взятых, а в слое 51 вторичной стенки количество лигнина из полисахаридов примерно одинаково, то слои 52 и 5з состоят в основном из полисахаридов. Помимо этого, на диаграмме видно, что [c.282]

    В [63] показано, что внутренняя поверхность капиллярной системы в течение варки непрерывно изменяется. Например, если в исходном образце еловой древесины она определена в 147 м г, то после растворения 50-60 % лигнина возрастает до 350-400 м /г, а затем начинает уменьшаться. Аналогично этому изменяется суммарный объем суб-микроскопических капилляров. Если в исходной древесине их объем не превышает 0,073 см /г, то после растворения 35 % лигнина он увеличивается до 0,52 см= /г, а при растворении 50 % снижается до 0,154 смэ/г. Наряду с этими закономерностями было установлено, что лигнин вторичной стенки растворяется с самого начала варки, а лигнин срединной пластинки - с запаздыванием [64]. [c.284]

    Таким образом, твердо установлено, что лигнин концентрируется в срединной пластинке. Но отсюда не следует, что химические связи между лигнином и углеводами невозможны. Такое заключение может считаться достоверным, только в том случае, если будет доказано, например, что срединная пластинка состоит полностью из лигнина, а вторичная стенка — только из углеводов. [c.725]

    Фактически это не так. Мы знаем, что срединная пластинка содержит приблизительно 25% вещества, не являющегося лигнином, а также что лигнин встречается и во вторичной стенке. На основании морфологии нельзя возразить против признания лигнин-углеводного комплекса, хотя состав подобного комплекса не обязательно должен быть одинаковым для срединной пластинки и вторичной стенки. [c.725]

    В этой связи интересно, что Сен и Германе [63] в своих экспериментах по набуханию использовали технику прокрашивания, оптические наблюдения между перекрещивающимися призмами Николя в натриевом свете и рентгеноскопические исследования джута различной степени очистки. Они нашли, что лигнин распределен не единообразно. Относительно малая и трудно удаляемая фракция, по-видимому, находится в наружном слое волокна, вне вторичной стенки. Это, вероятно, действует, как препятствие, при набухании. Делигнификация клеточной стенки до 0,5%-ного содержания лигнина только в небольшой степени увеличивает набухание. Удаление же последних следов лигнина вызывает значительный рост набухания. [c.725]

    При последующих варках атакуется вторичная стенка. Лигнин переходит в раствор с низким содержанием метоксилов, а пентозаны растворяются опять при постоянном соотношении, но несколько ином, чем это было найдено при растворении срединной пластинки. [c.726]

    Необходимо напомнить, что в 1925 г. Риттер (см. Брауне, 1952, стр. 21) показал, что лигнин вторичной стенки имел более низкое содержание метоксилов по сравнению с лигнином срединной пластинки. [c.727]

    Вторичная стенка наружный слой [c.523]

    Изучение количественного распределения гемицеллюлоз по клеточной стенке показывает, что у хвойных пород концентрация глюкоманнанов возрастает в направлении от сложной срединной пластинки (ML + Р) к слою 8з(Т), а концентрация араби-ноглюкуроноксилана почти не меняется. У лиственных же пород относительное содержание глюнуроноксилана выше во вторичной стенке, чем в (ML + Р). Полисахариды бородавчатой мембраны в древесине хвойных пород представлены в основном га-лактоглюкоманнанами. [c.218]

    Волокна растительного происхождения формируются на пов-сти семян (хлопок), в стеблях растений (тонкие стеблевые В.-лен, рами грубые-джут, пенька из конопли, кенаф и др.) и в листьях [жесткие листовые В., напр, манильская пенька (абака), сизаль]. Общее название стеблевых и листовых В.-лубяные. Растит. В. представляют собой одиночные клетки с каналом в центр, части. При их формировании образуется сначала наружный слой (первичная стенка), внутри к-рого постепенно откладываются неск. десятков слоев синтезирующейся целлюлозы (вторичная стенка). Такая структура В. определяет особенности их св-в -относительно высокую прочность, небольшое удлинение, значительную влагоемкость, а также хорошую накра-шиваемость, обусловленную большой пористостью (30% и более). [c.412]

    Пока точно не установлена роль галактанов в креневой древесине. Возможно, что эти полисахариды играют роль в период образования вторичной стенки клеток [79]. [c.228]

    В последнем слое вторичной стенки 83 микрофибриллы целлюлозы обычно расположены в виде плоской спирали, как в слое 8]. Эта стенка называется иногда третичной, она имеет небольшую толщину и ее внутренняя поверхность, направленная в сторону клеточной полости, иногда покрыта наплывами. Микрофйбриллы в этом слое расположены параллельно и не так плотно, как в слое 82, и угол, который они образуют с осью волокна, изменяется в широких пределах 40].----------------------------------------- [c.319]

    Эта операция осуществлялась на одревесневших срезах, предварительно освобожденных от лигнина с помощью хлорита натрия в уксуснокислой среде. Затем срезы были обработаны п-фенилаз- бензоилхлоридом с целью этерификации полисахаридов. Ярко окрашенные в оранжево-красный цвет срезы после набухания в пиридине фотометрировались. Подвергая такой обработке срезы, со стоящие из холоцеллюлозы, до и после удаления гемицеллюлоз, удалось установить, что основная масса гемицеллюлоз в древесине ели и березы сосредоточена в наружных слоях вторичной стенки. Так, при экстракции среза еловой холоцеллюлозы 16%-ным едким натром было установлено, что из наружных слоев клетки извлекается до 60—80%, из средины клеточной стенки около 50% и из слоя Зз только 167о растворимых в щелочи гемицеллюлоз от общего количества полисахаридов. Аналогичная картина наблюдалась и для поперечных срезов либриформа из древесины березы. [c.320]

    В период утолщения клеточной стенки в результате деятельности протоплазмы образуется вторичная стенка, которая по мнению ряда исследователей (Фрей-Висслинг, Москалева и др.) в свою очередь состоит из трех слоев наружного слоя 8 , среднего слоя 82 и внутреннего слоя 82. Однако другие исследователи (Мейер, Кларк, Фенгел) считают, что последний слой, отличающийся от вторичной стенки особой структурой и химическим составом, следует рассматривать как индивидуальный слой - [c.215]

    Изучение распределения компонентов древесины в клеточной стенке представляет очень трудную задачу. Распределение лигнина исследовали главным образом методом УФ-микроспектрофотометрии (работы Лан ге и др.). Содержание целлюлозы и гемицеллюлоз определяли химически ми методами после разделения слоев с помощью микроманипулятора Следует отметить, что результаты, полученные разными исследователями несколько расходятся, но общее заключение можно сделать. Сложная сре динная пластинка у хвойных пород на 60...90% состоит из лигнина (в ранней древесине в среднем примерно 70%, в поздней - 80%). Однако этот слой тонкий и лигнин срединной пластинки соответствует лишь небольшой части (15...30%) общего его количества в клеточной стенке. У лиственных пород срединная пластинка содержит меньше лигнина. Основная же масса лигнина находится во вторичной стенке, где его доля у хвойных пород составляет в среднем около 20...25% массы слоя, а у лиственных пород 12... 15%. Однако в отношении распределения лигнина по слоям вторичной стенки данные, полученные разными методами исследования, противоречивы. Более ранние результаты УФ-спектрофотометрических исследований показывали, что по направлению к полости клетки доля лигнина уменьшается. В слое 8( она больше, чем в слое 82, а в слое 8з(Т) составляет уже не более 10... 12% массы слоя для хвойных пород, тогда как у лиственных пород лигнин в этом слое вообще отсутствует. Результаты же более поздних исследований указывают на другие закономерности. В хвойной древесине во вторичной стенке наблюдается повышенная концентрация лигнина в слоях 8 и 8з по сравнению со слоем 82, а в лиственной древесине - равномерное распределение лигнина во вторичной стенке. Таким образом, требуется дальнейшее изучение распределения лигнина в клеточной стенке. [c.217]

    Во вторичной стенке S у хвойных пород содержание глюкоманнана и галакто-глюкоманнана вьиие, чем арабнноглюкуроноксилана арабинан и галактан присутствуют лишь в небольших количествах (в слое Si). У лиственных пород во вторичной стенке содержится преимущественно глюкуроноксилан и в небольшом количестве глюкоманнан, причем содержание нецеллюлозных полисахаридов по сравнению с хвойными породами оказывается выше. [c.218]

    В процессе варки целлюлозы и полуцеллюлозы древесная ткань подвергается химическому и физическому воздействию. В результате делигнификации и частичного удаления гемицеллюлоз она распадается на отдельные древесные волокна с превращением последних в целлюлозные волокна. При этом ультраструктура клеточной стенки существенно изменяется. Учитьгаая распределение слоев клеточной стенки по массе, необходимо подчеркнуть, что основное количество лигнина присутствует во вторичной стенке. Следовательно, для достижения достаточной степени делигнификации требуется удалить лигнин из всех слоев клеточной стенки. Удаление лигнина из срединной пластинки приводит к ее разрушению и разъединению волокон, а удаление из вторичной стенкн - к ослаблению связей между фибриллами. Фибриллярная структура клеточной стенки позволяет делить, волокна на продольные элементы и связывать их между собой. На этом основан процесс производства бумаги. В результате делигнификации целлюлозные волокна становятся гибкими и эластичными. При последующем размоле целлюлозной массы при подготовке к формованию бумаги происходит фибриллирование клеточньк стенок - расщепление их на фибриллы и последних на более тонкие элементы. На процесс фибриллирования определяющее влияние оказы-вае ультраструктура клеточной стенки. По сравнению с хлопковым волокном волокна древесной целлюлозы фибриллируются значительно легче. При формовании бумаги в процессе удаления воды возникают прочные межволоконные связи за счет трения, механического зацепления фибрилл, а также возникновения межмолекулярных сил взаимодействия, в том числе прочных водородных связей между макромолекулами на поверхностях фибриллированных элементов, и образуется бумажный лист. [c.224]

    Терашима с сотрудниками на основании исследований, проведенных в последнем десятилетии, приходит к заключению, что протолигнин в древесине нельзя считать полностью хаотическим полимером - результатом случайной сополимеризации смеси различных монолигнолов. Лигнин образуется в присутствии и с участием полисахаридов в биологически регулируемом процессе, тесно связанном с ходом формирования ультраструктуры лигнифицированной клеточной стенки в целом. Неизбежное следствие такого протекания процессов отложения слоев клеточной стенки и их одревеснения - гетерогенность лигнина в древесине. В хвойных деревьях различаются по составу лигнины срединной пластинки и вторичной стенки, а в лиственных деревьях существуют дополнительно различия между лигнинами волокон и сосудов. Следует подчеркнуть, что образованию лигнина предшествует отложение полисахаридов - целлюлозы в виде микрофибрилл, пектиновых веществ и гемицеллюлоз разного типа для каждой стадии отложения лигнина. [c.402]

    Исходные монолигнолы включаются в протолигнин в том же порядке, в каком они образуются в ходе биосинтеза - сначала м-кумаровый, затем конфериловый спирт и, наконец, синаповый. Поэтому гваяцильный лигнин хвойных неоднороден лигнин срединной пластинки содержит большую долю Н-единиц, чем лигнин вторичной стенки, тогда как 8-еди-ницы обнаруживаются в лигнине вторичной стенки ближе к полости. Состав гваяцил-сирингильного лигнина лиственных подчиняется этой же закономерности, но, соответственно, содержит меньшую долю Н-единиц (только в лигнине срединной пластинки) и большую долю 8-единиц. На состав и строение лигнина существенное влияние оказывают относительное содержание трех монолигнолов, а также тип полисахаридного геля, в котором протекает процесс дегидрогенизационной полимеризации, pH, присутствие минеральных компонентов, особенно кальция, и другие [c.402]

    Обработанные этими растворами срезы изучались под микроскопом в поляризованном свете. Многочисленные фотомикрографии срезов древесины на разных стадиях хлорирования в четыреххлористом углероде показали, что лигнин был распределен по срединной пластинке и различным слоям целлюлозы вторичной стенки. Фотомикрограммы показали также присутствие темных концентрических областей во вторичной стенке, откуда был удален лигнин. Число этих темных зон зависело от толщины стенки. После набухания делигнифицированных срезов в этаноле или воде появлялись дополнительные темные зоны. В осине, очевидно, существует два типа лигнина. [c.32]

    Представление о наличии одного комплекса в срединной пластинке и другого во вторичной стенке было подтверждено данными Аалтио и Рошиера [1]. Они показали, что отношение растворнмого лигнина к растворимым пентозанам значительно изменяется, как только удаляется вся срединная ламелла. [c.725]


Смотреть страницы где упоминается термин Вторичная стенка: [c.153]    [c.324]    [c.198]    [c.213]    [c.216]    [c.227]    [c.371]    [c.403]    [c.408]    [c.283]    [c.727]   
Химия целлюлозы и ее спутников (1953) -- [ c.113 , c.118 , c.133 ]




ПОИСК





Смотрите так же термины и статьи:

Стевны

Стейси



© 2024 chem21.info Реклама на сайте