Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Деформация в жидкой среде

    Деформация — это предшествующая механическому разрушению реакция образца полимера на воздействие внешней силы. Несмотря на первоочередность деформационных процессов во времени, изучение влияния жидкостей на механические свойства полимеров исторически начиналось с выявления закономерностей, отражающих изменение прочности и долговечности. Единство процессов и закономерностей деформирования и разрушения полимеров не только в жидкой, но и в газовой среде весьма спорно, поэтому в последние годы началось интенсивное самостоятельное изучение деформации полимеров различных классов в жидкостях. Пристальное внимание исследователей к деформационным свойствам полимеров обусловлено широким использованием механической вытяжки при переработке полимеров и необходимостью обеспечения деформационной долговечности элементов различных конструкций из полимерных материалов, работающих в контакте с жидкими средами. [c.162]


    Однако роль жидкости в процессах измельчения этим не исчерпывается. Адгезируя к частичкам твердого тела, она образует жидкие прослойки между ними, резко снижая трение между частицами и затраты энергии на его преодоление. В результате разогрев измельчаемого материала за счет трения резко понижается. Разогрев же материала за счет рассеяния энергии обратимых деформаций в жидкой среде также меньше, чем в атмосфере газа. Это объясняется тем, что в жидкости теплоотдача от зерен твердого тела в окружающую среду протекает гораздо интенсивнее, чем в газовой среде или вакууме, и перераспределение тепла между измельчаемым материалом и другими частями измельчающего устройства будет иным. В результате зерна твердого материала в жидкой среде из-за менее интенсивного разогрева аморфизируются на значительно меньшую глубину, чем в сухой среде (1,6—2,0 нм вместо 15—16 нм). В целом затраты энергии на измельчение во влажной среде значительно уменьшаются и время, необходимое для достижения измельчаемым материалом определенной удельной поверхности, сокращается весьма существенно. Для повышения эффективности измельчения большое значение имеет открытый П. А. Ребиндером эффект понижения прочности твердых материалов под влиянием поверхностно-активных веществ (ПАВ). Молекулы ПАВ, адсорбируясь на микротрещинах, выходящих на поверхность частиц, снижают величину поверхностной энергии. В соответствии с уравнением Гриффитса трещины развиваются при условии [c.256]

    На фиг. 11 представлена схема развития клинообразных трещин в твердом теле при его деформации. Жидкая среда проникает внутрь этих трещин под влиянием капиллярного давления. Но еще до полного заполнения трещин жидкостью с поверхности мениска отрываются поверхностно-активные элементы и проникают дальше внутрь трещин, мигрируя по их стенкам. Это проникновение внутрь трещин происходит с достаточно высокими скоростями, значительно большими, чем скорость всасывания жидкости. [c.47]

    Внедрение отдельных молекул илн групп молекул жидкой среды в микротрещины поверхностей трения, или по межкристаллитным плоскостям поверхностей трения приводит к облегчению микро-пластических деформаций поверхностных слоев, облегчению процессов диспергирования и т. п., что в свою очередь приводит к улучшению прирабатываемости трущихся пар, снижению сил трения и износа. [c.59]


    Если, однако, исследуются растворы с очень высокой степенью наполнения, то в некоторых случаях возможно структурирование за счет взаимодействия частиц наполнителя друг с другом уже в чистом растворителе в отсутствие полимера [369]. Минимальная степень наполнения, при которой в растворе возникает пространственная структура, уменьшается с ростом степени дисперсности наполнителя. Все эти данные позволили Ребиндеру и сотр. сделать вывод о том,, что частицы активного наполнителя являются центрами образования сплошной пространственной структуры. Такие структуры обладают тиксотропными свойствами [369, 370], причем для них характерно наличие тонких остаточных прослоек жидкой среды в местах контакта между частицами. Эти прослойки, снижая прочность системы, обеспечивают ее способность к заметным пластическим деформациям — пластическому течению без значительного разрушения структуры и к легкому ее восстановлению после полного или частичного разрушения. [c.191]

    Деформация сферической частицы при различных типах течения. Сферическая частица жидкости радиусом 12,7 мм помещена в жидкую среду с идентичными физическими свойствами, Изобразите форму частицы а) через одну и через две [c.414]

    В технологических процессах, связанных с деформацией и разрушением минералов в условиях воздействия агрессивных жидких сред (измельчение и. переработка минерального сырья, бурение горных пород, шлифование минералов, защита строительных конструкций от коррозии под напряжением и т. д.), существенное значение имеет взаимосвязь химических реакций на поверхности твердого тела с его физико-механическими свойствами. [c.131]

    Детали машин, оборудование и сооружения, выполненные из стали, работают в различных средах — влажном воздухе, воде и водных растворах, смазочных маслах, жидких металлах, радиоактивных средах и др. Все среды могут иметь высокие или низкие температуры и давления, а также находиться в движении, что существенно при их воздействии на металл. Они могут влиять на механические свойства стали, особенно при продолжительной нагрузке, так как воздействие среды на металл обычно проявляется в течение продолжительного времени. Рабочие среды особенно сильно влияют на металл в процессе его деформации, но и до деформации некоторые среды при соприкосновении с металлом способны вызывать изменение его прочности, износоустойчивости и пластичности. [c.101]

    Для аморфных стеклообразных полимеров вид деформационных кривых сохраняется как при растяжении в активных жидкостях, так и при хрупком разрушении на воздухе. Разрушение этих полимеров в жидкости происходит при меньших напряжениях, чем на воздухе, и сопровождается интенсивным растрескиванием поверхности. Кристаллические эластомеры, характеризующиеся большими деформациями растяжения, более чувствительны к действию жидких сред различной химической природы. Изменение их деформационного поведения в жидкостях может выражаться в уменьшении начального модуля при растяжении (только в растворителях), в снижении предела вынужденной эластичности и напряжения развития шейки, в увеличении или уменьшении предельной деформации при разрыве. [c.163]

    Таким образом, существует экспериментальное доказательство, что возрастание сопротивления деформации происходит при уменьшении, а не при увеличении межфазной поверхностной энергии. Это может свидетельствовать о неприменимости одного данного критерия к описанию деформационных свойств стеклообразных полимеров в неограниченно смачивающих жидких средах. [c.169]

    При исследовании изменения прочности и деформационных свойств полимерных материалов в агрессивных средах наибольшее распространение получили два основных типа испытаний испытания на растяжение (изгиб) при постоянной нагрузке или прп постоянном напряжении и испытания на растяжение (изгиб) при постоянной деформации. В первой группе испытаний в качестве параметров процесса разрушения выбирают время для полного разрушения стандартного образца при разных нагрузках (напряжениях) или время до появления видимых поверхностных трещин критическую деформацию разрушения критическое напряжение, на котором через определенное время появляются видимые трещины. Основными параметрами второй группы испытаний являются время растрескивания определенного числа деформированных образцов в жидкой среде скорость разрастания трещин в образце. [c.56]

    Таким образом, можно сделать заключение, что если пластическое течение углеродистой стали совершается с интенсивным отводом тепла, то создаваемое в результате этого упрочнение будет меньшим, чем при самонагреве образцов в воздухе. Поэтому в инактивной и поверхностно-активной жидких средах образцы будут достигать предела выносливости с меньшей накопленной неупругой деформацией. Поскольку в таких средах интенсивность нарастания неупругих деформаций с увеличением амплитуды напряжений заметно ниже, чем в воздухе, то они в различной степени влияют на ограниченную выносливость стали. Рассмотренные диаграммы дают возможность дифференцировать активные среды по способности изменять упругие свойства металла при циклическом нафужении. [c.84]


    Реология жидкостей изучает их деформационные свойства, способы исследования этих свойств, а также физико-химическую природу жидкостей. Основными кинематическими переменными для жидкостей служат деформация и ее скорость. Поэтому для изучения реологических характеристик жидких сред устанавливают связь между приложенными внешними нагрузками и кинематическими параметрами. [c.88]

    Для исключения влияния скорости растяжения на деформационные характеристики фторопластов испытания проводили в режиме ползучести. Зависимость предельной деформации ползучести фторопластов от приложенной нагрузки представлена на рис. IV. 19. Резкое возрастание деформации ползучести начинается с некоторого значения напряжения, названного критическим напряжением скачка ползучести Величина критического напряжения скачка ползучести используемая нами в качестве характеристики сопротивления деформированию, и максимальная деформация ползучести весьма чувствительны к действию жидких сред. [c.166]

    Пока разрывы пространственной сетки происходят в пластично-вязкой среде, не сопровождаясь нарушением сплошности, спонтанная тиксотропная восстанавливаемость структуры еще сохраняется. При дальнейшем снижении содержания жидкой среды прочность дисперсной структуры может восстанавливаться после разрушения только под напрян<ением в условиях пластической деформации, обеспечивающей истинный контакт по всей поверхности разрыва. [c.144]

    Физической основой метода АЭ является акустическое излучение при пластической деформации твердых сред, развитии дефектов, трении, прохождении жидких и газообразных сред через узкие отверстия - сквозные дефекты. Эти процессы неизбежно порождают волны, регистрируя которые, можно судить о протекании процессов и их параметрах. Метод АЭ обладает рядом достоинств, благодаря которым расширяются возможности технической диагностики и неразрушающего контроля. [c.301]

    Если сравнивать данные при одноосном сжатии и двухосном растяжении, то можно видеть различие в абсолютных значениях О при одних и тех же значениях Я. Для кристаллических структурно неоднородных полимеров подобное явление наблюдали и при диффузии газов. Оно может быть объяснено различными граничными условиями диффузионного потока при оценке О из данных по сорбции (сжатие) и проницаемости (растяжение) [36]. Кроме того, следует учитывать некоторую неоднородность и различие в размерах надмолекулярных структур образцов различной толщины. Интересен тот факт (см. рис. 11.7 и П.8), что для одних и тех же значений относительной деформации при сжатии и растяжении образцов изменения коэффициентов диффузии жидких сред примерно одинаковы. Это позволяет рассматривать с единых позиций влияние различных видов деформаций полимерных тел на кинетику переноса низкомолекулярных компонентов. [c.76]

    При постоянных изгибающих деформациях образца в его поверхностных слоях в результате воздействия жидкой среды могут ускоряться релаксационные процессы, приводящие к уменьшению напряженности. Это приводит к более четко выраженному [c.125]

    Наиболее чувствительны к действию жидких сред вынужденноэластические деформации некоторых аморфных и кристаллических полимеров в застеклованном состоянии (рис. IV. 18). [c.163]

    Согласно этому правилу [81] поверхностная активность водных растворов органических веществ тем выше, чем длиннее углеводородный радикал. При увеличении радикала на одну группу —СНа— поверхностная активность вещества в растворе возрастает в 3—3,5 раза. Аналогичным образом изменяется и предел вынужденной эластичности полистирола в водных растворах спиртов малых концентраций. Предел вынужденной эластичности полистирола одинаков в растворах различных спиртов, если концентрация каждого последующего гомолога в растворе в 3 раза меньше, чем предыдущего, от факт был воспринят как решающее доказательство адсорбционной природы эффекта облегчения деформации и справедливости использования межфазной поверхностной энергии в качестве критерия активности жидкой среды. Однако экспериментальное доказательство этому было получено лишь для жидкостей, не растекающихся по поверхности образца. Для жидких сред, растекающихся по поверхности образца, как будет показано ниже, уменьшение межфазной поверхностной энергии приводит к увеличению сопротивления деформации. [c.165]

    Анализ результатов количественного изучения поглощения жидкой среды при растяжении фторопластовых пленок заставляет по-новому подходить к описанию деформационных свойств кристаллических полимеров в жидких средах, не вызывающих их существенного набухания. При трактовке эффекта облегчения деформации авторы [77] не учитывали объем жидкости, поглощаемой полимером. Для адсорбционного облегчения деформации достаточно значительно меньшего количества жидкости, чем то, которое реально поглощается образцами. Большая часть жидкости, проникающая в деформируемый образец, свидетельствует о значении капиллярных сил и сил, вызывающих перемещение жидкой фазы, в механизме облегчения деформации. [c.167]

    В заключение следует отметить, что развиваемый авторами подход к изучению деформации полимеров в жидкостях, основанный на количественной оценке поглощения среды, позволяет более глубоко понять причины различного изменения деформационных свойств полимеров разной структуры и находящихся в различных физических состояниях, так как количество поглощенной жидкости связано с особенностями структурных перестроек в полимере при растяжении и определяет эффективность действия жидкой среды. [c.173]

    При испытаниях нагруженных полимерных образцов в жидких средах используются стандартные разрывные машины с постоянной и переменной скоростью растяжения, рычажные установки с постоянной нагрузкой и с постоянным напряжением, машины для динамических усталостных испытаний, а также приборы и приспособления для постоянной деформации испытуемых образцов. В некоторых случаях применяются оптические приспособления и микроскопы для визуализации процесса развития трещины при разрушении в средах. [c.220]

    Наибольшее распространение за последние 15—20 лет получили два основных типа испытаний в жидких средах испытания на растяжение (изгиб) при постоянной нагрузке или при постоянном напряжении и испытание на растяжение (изгиб) при постоянной деформации. В первой группе испытаний в качестве параметров процесса разрушения выбирают  [c.220]

    На рис. УП.4 представлена схема установки для двухосного нагружения пленочных полимерных материалов при одновременном одностороннем контакте с жидкой средой. Установка представляет собой цилиндрический сосуд, состоящий из верхней 2 и нижней 5 ячеек, между которыми во фланцах с помощью накидной гайки 4 крепят полимерный образец 9. В нижней ячейке может создаваться постоянное избыточное давление инертного газа, контролируемое по манометру 7. Степень прогиба полимерного образца и развитие деформации во времени фиксируется с помощью штока 3, реохорда 1 и электронного самописца 10. Жидкую среду заливают в верхнюю ячейку. Установка позволяет изучать ползучесть ири двухосном нагружении, а также определять время до разрушения полимерного образца. [c.224]

    В [17] описан стенд для исследования ползучести и длительной прочности жестких пластмасс при сжатии в жидких средах. Стенд состоит из шести позиционных установок, имеющих общую систему подачи теплоносителя, контроля и записи деформаций, предельная нагрузка на образец до 49 кН. Схема пружинной установки для длительных испытаний пластмасс при- сжатии [c.224]

    Наиболее перспективен и интересен, на наш взгляд, метод исследования поверхностного растрескивания пластмасс в агрессивных жидких средах [14], основанный на различном нагружении одного исследуемого образца с помощью переменной деформации изгиба. Особенностью метода является возможность получения на одном образце различных деформаций по длине образца. Это достигается тем, что длинный плоский образец изгибается по образующей эллипса. Поверхностная дефор.мация и напряжение являются функцией радиуса кривизны образующей эллипса и толщины образца. Предел изменения поверхностной относительной деформации и напряжения можно регулировать геометрическими размерами эллипса. [c.226]

    По материалам стендовых испытаний проф. Опейко Ф. А. был дан критический обзор существующих методов оценки интенсивности перемешивания жидкостей [55]. На основе теории упругости была дана оценка интенсивности деформации жидких сред. В ходе математических выкладок выявлен комплекс v D — d)lv, который, как известно, является классическим числом Re. Таким образом, впервые было теоретически установлено, что интенсивность перемешивания является функцией от числа Re, что ранее отрицалось многими авторами. В работе [55] показано, что для нормализованных вертикальных аппаратов вытянутой формы наибольшая интенсивность перемешивания достигается на поворотах от циркуляционной трубы к кольцевому пространству и обратно. Здесь же сосредоточены основные потери напора в циркуляционном контуре. Никакие характеристики перемешивающих устройств (насосов) не могут определять интенсивность перемешивания вследствие того, что время пребывания реагирующей среды в самом перемешивающем устройстве относительно мало. [c.176]

    Зависимость скорости процесса от начальной концентрации серной кислоты, используемой для сульфирования сополимера (рис. 5.32), показывает, что, чем ниже эта концентрация, тем при меньшей степени превращения устанавливается равновесие в системе. Причиной этого, как указывалось ранее, является гидратация сульфоионов, диффундирующих в гранулу сополимера. Гидратация приводит к деформации структуры жидкой среды в порах гранулы, которая выражается в уменьшении движущей силы процесса и установлении равновесия по воде. Сравнение экспериментальных и расчетных кривых кинетики сульфирования, представленных на том же рисунке, свидетельствует о существенном влиянии гидратации на установление межфазного равновесия в системе. [c.366]

    Следует указать на ряд интересных и важных теоретических исследований, проведенных недавно Б. В. Дерягиным и С. С. Ду-хиным по изучению электрофореза и потенциала седиментации . Эти авторы привлекают внимание к неравновесным электропо-верхностным силам, возникающим вследствие деформации двойного электрического слоя при движении взвешенных частиц. Деформированный двойной слой продуцирует электрическое поле, сфера действия которого часто на несколько порядков превышает сферу действия недеформированного двойного слоя в тех же условиях. С. С. Духин указывает на значение возникающих потоков диффузии, проводит их учет для явления седиментационного потенциала при движении твердых частиц и жидких капель в жидкой среде. Движение взвешенных частиц за счет электрического поля, образующегося при диффузии электролита, названо С. С. Духиным диффузиофорезом. Наличие этого процесса было демонстрировано им на примере осаждения глобул латекса. [c.143]

    Пока разрывы пространственной сетки происходят в пластичновязкой среде, не сопровождаясь нарушением сплошности, спонтанная тиксотропия (восстанавливаемость структуры) еще сохраняется. При дальнейшем же снижении содержания жидкой среды (переходе к пластично формирующимся керамическим пастам) прочность дисперсной структуры может восстанавливаться после разрушения только под напряжением в условиях пластической деформации, обеспечивающей истинный контакт по всей поверхности разрыва. При дальнейщем уплотнении системы и удалении жидкой дисперсионной среды выпариванием (при увеличении числа связей в единице объема и уменьшении толщины прослоек между частичками) исчезает уже не только тиксотропная восстанавливаемость, но и пластичность, а еще ранее высокоэластичность. Пластическая прочность -Рт при этом непрерывно [c.191]

    Роль электроповерхностных неравновесных сил в различных процессах, вероятно, весьма значительна. Деформация двойного электрического слоя может происходить не только под действием внешнего электрического поля (этот случай -будет рассмотрен в разд. 5 настоящей главы), но и при действии конвективных потоков жидкой среды, гравитационного поля, поля центробежных сил, ультразвукового поля, механических вибраций, броуновского движения. В частности, выло обнаружено влияние электрического поля, возникающего при оседании мелких частиц, на скорость седиментации. В. Г. Левичем и-А.-Н. Фрумкиным было указано, что вблизи поверхности капли, движущейся в жидкой среде, может возникать электрическое поле диффузионного происхождения. Поляризация ионных слоев, наступающая вследствие деформации двойного электрического слоя, обусловливает проявление дальнодействующих сил притяжения между индуцированными диполями. Наконец, Штауф наблюдал образование периодических структур из непроводящих кол.иоидных частиц, находящихся в переменном электрическом поле. Некоторые из этих эффектов более подробно рассмотрены в гл. IX. [c.197]

    В основе классификации структурир. дисперсных систем, согласно П А. Ребиндеру, лежит тип связей-контактов, возникающих между дисперсными частицами. СвязА м.б. обратимыми по прочности (т.е. самопроизвольно восстанавливающимися после разрушения), Непосредственными (атомные контакты в порошках, сила сцепления 10" -10" Н), коагуляционными в суспензиях и эмульсиях, т.е. образующимися в результате сцепления частиц через прослойку жидкой среды (сила сцепления 10" -10 Н), прочными, необратимо разрушающимися (фазовые контакты). Последние характерны для дисперсных материалов, получающихся из систем с обратимыми по прочности связями в результате фазовые или хим. превращений кристаллизации из пересьпц. р-ров или расплавов, полимеризации, спекания, пластич. деформации и др. [c.446]

    Как и предполагалось, изменение скорости диффузии при деформировании полимерных образцов может быть связано с уменьшением свободного объема полимера. Для исследованных образцов ПЭНП и жидких сред зависимость, описываемая теоретическим уравнением (II.25), хорошо соблюдается при двухосном растяжении при значениях относительной линейной деформации X,, < [c.89]

    Кроме того, было исследовано. влияние на проницаемость и скорость диффузии давления жидкой среды в деформированных полимерных образцах. Характер влияния этих факторов в закри-тической области деформации сравнивали с закономерностями, наблюдаемыми в докритической области. При этом исходили из предположения, что если с увеличением давления жидкой среды возрастает скорость ее проникания через образец полимера, то механизм проницаемости обусловлен не только активированной диффузией, а в основном фазовым потоком жидкости по субмикро-и микродефектам структуры полимера. [c.95]

    Одни из первых попыток качественного описания деформационных свойств стеклообразных полимеров со структурных позиций были предприняты Бессоновым и Кувшинским [26, 70]. Исследуя структуру микротрещин, возникающих при деформации этих полимеров на воздухе, они показали, что макродеформация образцов складывается из локальных деформаций микроскопических тяжей, соединяющих створки растущих трещин. На связь макродеформации стеклообразных полимеров в жидкостях с числом микротрещин и длиной пересекающих их микрофибрилл более конкретно указывают авторы работ [76, 77]. Обнаруженная связь процесса микрорастрескивания полимеров с деформационными свойствами послужила причиной тщательного исследования структуры и свойств полимерного материала внутри трещин. Систематическое экспериментальное исследование структуры физико-механических свойств микротрещин, возникающих при растяжении стеклообразных полимеров в жидких средах, провели в последние годы Бакеев и Волынский с сотрудниками [77, 78]. [c.164]

    Сокращение размеров образцов при сушке в процессе испарения жидкости также не может быть призяано единственной причиной, так как обратимая деформация этих пленок (до 40%) обнаруживается и после снятия нагрузки в жидкой среде, и при повторной деформации высушенных образцов. Используя экспери- [c.164]

    С нашей точки зрения вызывает сомнение правомерность объяснения быстрого снижения сопротивления деформации под действием жидкой среды длительным процессом диффузионного заполнения молекулами среды аморфных прослоек в структуре полиэтилена. Для уточнения механизма проникания жидкой среды в кристаллический полимер при деформации мы выбрали такую систему полимер—жидкость, в которой скорость диффузионного проникания жидкости в ненапряженный полимер очень мала. Исследовали ползучесть пленки из фторопласта-42 в контакте с жидкостями различной химической природы 1,2-дихлорэтан, бензол, четыреххлористый углерод, пентан, гексан, октан, декан. Использованные жидкости, перечисленные выше в порядке увеличения мольного объема, не вызывают набухания пленки более чем на 0,5% в течение времени, необходимого для оценки величины Окр при ползучести. Изучение сорбционных процессов при растяжении пленок показало, что для фторопла ста-42, так же как и для стеклообразных фторопластов-32Л и ЗМ, характерно проникание некоторого количества жидкой среды в шейку [82]. Однако, в отличие от стеклообразных фторопластов, критическое напряжение Ок р и е акс фторопласта-42 не зависят от фазовых параметров жидкости и имеют почти одинаковые значения в таких различных жидкостях, как 1,2-дихлорэтан, бензол и пентан. Эффективность [c.171]


Смотреть страницы где упоминается термин Деформация в жидкой среде: [c.162]    [c.124]    [c.197]    [c.277]    [c.263]    [c.576]    [c.566]    [c.117]    [c.123]    [c.99]    [c.167]    [c.142]   
Высокодисперсное ориентированное состояние полимеров (1984) -- [ c.122 ]




ПОИСК





Смотрите так же термины и статьи:

Влияние малых количеств адсорбционно-активных металлических расплавов на деформацию и разрушение металлов Возникновение хрупкости металлов в присутствии жидких металлических сред

Влияние окружающей среды на деформацию и разрушение твердых Влияние жидких сред на микрорастрескивание полимеров

СТРУКТУРЫ С ФАЗОВЫМИ КОНТАКТАМИ, ВОЗНИКАЮЩИМИ В РЕЗУЛЬТАТЕ ВЫДЕЛЕНИЯ НОВОЙ ФАЗЫ ПРИ УДАЛЕНИИ ЖИДКОИ СРЕДЫ ИЛИ ВСЛЕДСТВИЕ ПЛАСТИЧЕСКОЙ ДЕФОРМАЦИИ ЧАСТИЦ



© 2024 chem21.info Реклама на сайте