Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Рентгеновский анализ поверхности железа

    Изучение влияния условий нагружения на характер изменения остаточных напряжений II рода показало [34], что при упруго-пластическом деформировании железа (выше предела выносливости) в воздухе уже при малой базе числа циклов нагружения (10 — 5 10 циклов) остаточные напряжения растут до 300—350 МПа и при дальнейшем увеличении базы испытания изменяются мало. В присутствии такой поверхностно-активной среды, как 2 %-ный раствор олеиновой кислоты в вазелиновом масле, характер изменения остаточных напряжений существенно меняется. При малых базах испытания уровень напряжений ниже, чем при испытании в воздухе, а при больших базах — значительно выше и достигает 900 — 950 МПа. Отсюда следует, что поверхностно-активные среды уменьшают энергию выхода на поверхность дислокаций и при напряжениях, превышающих предел выносливости, упрочнение металла происходит медленнее, но степень упрочнения с увеличением числа циклов нагружения значительно выше, чем при испытании в воздухе. При этом по данным рентгеновского анализа зерна феррита в поверхностно-активных средах более интенсивно дробятся на различно ориентированные субзерна, что выражается в большой степени наклепа. При низких уровнях напряжений вследствие охвата пластическим течением большого количества зерен поверхностно-активная среда разупрочняет металл. [c.16]


    Для фазового анализа применяется ряд физических и химических методов. Наиболее обычным физическим методом фазового анализа металлов и силикатов является микроскопическое исследование. В микроскопическом исследовании металлов обычно предварительно травят полированную поверхность металла тем или другим химическим реактивом для более четкого выделения поверхности раздела отдельных фаз. В результате выявляется определенная структура металла, которую наблюдают под микроскопом. При исследовании различных горных пород применяют, кроме того, разделение измельченной породы на фракции по удельному весу, отделение магнитных минералов (а также частиц металлического железа, внесенного при бурении скважины) посредством магнита (магнитная сепарация) и т. д. В некоторых случаях для целей фазового анализа изучают изменение свойств материалов при нагревании (термографический анализ), применяют рентгеновские и другие методы исследования. [c.14]

    Сурков и др. [20] описали очень интересный рентгенофлуоресцентный спектрометр, с помощью которого проведен элементный анализ пород на поверхности Венеры. Прибор снабжен двумя радиоактивными источниками, Fe и Pu. Альфа-линия излучения плутония возбуждает рентгеновское излучение легких элементов, Mg, Al и Si, а при определении тяжелых элементов— К, Са и Ti, предпочтительнее источник на основе изотопа железа. Еще более тяжелые элементы, особенно Мп и Fe, возбуждаются рентгеновскими лучами, испускаемыми плутонием. Спектрометр имеет четыре газовых пропорциональных счетчика и двойной 128-канальный анализатор амплитуды импульсов. В обычную конструкцию приборов были внесены изменения, учитывающие суровые внешние условия на поверхности Венеры (500 °С, 90 атм). [c.246]

    Рентгеновский анализ показал наличие в обожженном материале сульфида железа, величины межплоскостных расстояний которого на рентгенограмме соответствуют природному минералу триолиту. Характерными линиями сульфида железа, образовавшегося в СгР, являются линии со значениями 2,926, 2,655, 2,066, 1,618 А. Количество сульфата кальция, разложившегося в данных условиях, составляло 31,7%. Для изучения процесса гидратации синтезированного СгР и обожженной смеси его с Са504 были применены петрографический, химический, рентгеноструктурный и электронномикроскопический методы исследования. Для термического анализа исследуемые объекты измельчали до удельной поверхности, близкой к 7000 см г, затворяли дистиллированной водой до образования пасты пластичной консистенции, а затем хранили в герметически закрывающихся пробирках при температуре 20 2° С. Перед термическим анализом пасту обезвоживали этиловым спиртом и измельчали до полного прохождения через сито 5100 отв см . Кривые нагревания гидратированного в воде СгР в течение 1 и 9 н, 1, 3, 7 дней и 3 месяцев приведены на рис. 1. [c.384]


    Интересно отметить, что рентгеновский анализ дал различное строение активной и пассивной поверхности железа (Фрейндлих и Цохер, 1927). Остается однако открытым вопрос, насколько это наблюдение можно обобщить, так как в некоторых случаях такие структурные изменения не удалось наблюдать. [c.428]

    Для понимания процессов анодной пассивации и ингибирования растворения металлов, коррозионных процессов, ингибирования анодного окисления водорода и органического топлива чрезвычайно существенно знать свойства пассивирующей пленки. Ингибирующие пленки, состоящие из окислов металлов, обычно изучают различными методами, основанными на тонкопленочной катодной кулонометрии, химическом десорбировании и анализе, дифракции рентгеновских лучей (в случае тонких окисных пленок на никеле и железе), а также оптическими методами с использованием эллипсометра. Существенное преимущество последнего подхода в том, что он является методом in situ и легко применим к изучению гладких металлических поверхностей, на которых происходит анодное растворение, окисление или пассивация. В ряде случаев удается получить информацию не только о толщине пленки, но и о ее диэлектрических свойствах и о высокочастотной проводимости, и это помогает выяснить роль изменений электрических и физических свойств защитных или пассивирующих пленок. Особенный интерес представляет выяснение критических [c.400]

    Геохимические пробы могут исследоваться в виде твердых образцов, порошков, спрессованных брикетов, плавов или растворов. При количественном анализе для получения наибольшей чувствительности и точности поверхность пробы, облучаемая первичным пучком лучей, должна быть достаточно большой и обычно заполняет всю площадь держателя, которая, как правило, превышает площадь поперечного сечения первичного пучка. Эффективное проникновение рентгеновских лучей в пробу мало. На практике критическая толщина слоя определяется интенсивностью флуоресценции, соответствующей 99% интенсивности бесконечно толстого слоя пробы. Р. К. Кох и Б. Когерти 123] измерили критическую толщину слоя металлических железа, хрома и никеля и нашли ее соответствующей приблизительно 0,003 см. Для порошков, конечно, это значение выше. Очень важно, чтобы поверхностный слой пробы был представительным. [c.230]

    Хроматография осадочная. Основана на химич. реакциях хемосорбента с компонентами смеси растворенных веществ с образованием новой фазы — осадка. Через слой слабощелочной окиси алюминия, находящейся в колонке, пропускают раствор, содержащий ионы, дающие окрашенные гидроокиси, напр, ртутп, меди и серебра. В верхней части колонки образуется желтовато-серая зона гидрата окиси ртути, ниже — голубая зона гидрата окиси меди и еще нпже — коричневая зона окиси серебра. Осадочная X. нашла применение для экспрессного качественного анализа смесей катионов и анионов. На фоне бесцветного сорбента окраски воспринимаются глазом гораздо лучше, чем в растворе поэтому подобный метод анализа чувствительнее, чем классический. Химич реагент может быть предварительно адсорбирован на твердом носителе. Если через слой активного угля, помещенного в колонку и содержащего адсорбированный диметилглиоксим, пропускать раствор солей, загрязненных примесями тяжелых металлов (никеля, железа, меди и т. п.), то последние образуют трудно-растворимые соединения на поверхности угля. Этот способ разделения носит название адсорбционно-комилексообразовательной X. примером служит быстрый способ глубокой очистки р-ров сульфата цинка, идущего на изготовление рентгеновских экранов, от следов никеля и железа, тушащих люминесценцию. [c.378]

    Но даже если внести поправку на приведенную выше величину с для РегОз в оптические результаты, все же приведенные позднее Дэвисом, Эвансом и Агаром [416] данные (табл. 22) для толщины окисных пленок на железе, соответствующей различным интерференционным цветам, следует признать зани женными. Эту толщину они вычислили по привесу после опре-деления состава пленки несколькими методами (рентгеновским, электронографическим, анализом снятых пленок на двухвалентные и трехвалентные ионы железа, изучением свойств в процессе электрометрического восстановления) на основе предположения. что удельные веса а-РегОз и Рез04 соответственно равны 5,25 и 5,20. Поверхность этих образцов перед окислением восстанавливали водородом, тогда как раньше исследователи обычно обрабатывали ее абразивом. [c.262]

    Количественный анализ катализаторов методом диффракции рентгеновских лучей сложен и не очень точен по следующим причинам а) диффузный фон, образующийся как из-за особенностей аппаратуры, так и из-за различного рода неупорядоченности в кристаллитах б) расширение линий в) различие в отражениях от различных фаз вследствие различий в рассеивающей силе составляющих атомов г) различия в интенсивности рассеивания, определяющиеся размерами единичной ячейки и степенью асимметрии д) случайная интерференция линий е) флюоресцентное излучение от образца и трудности, присущие методам измерения интенсивности линий. Применение в качестве стандарта кристаллического образца с диффракционными линиями, близкими к линиям определяемой фазы, смягчает влияние некоторых из указанных факторов. Интенсивность рассеянного рентгеновского излучения, вызванного наличием данной фазы, с поправкой на различные. эффекты, указанные выше, линейно зависит от ее концентрации, но четкость диффракционной картины зависит от величины и упорядоченности кристаллитов. Большие кристаллиты дают резкие интенсивные диффракционные линии, в то время как маленькие кристаллиты дают широкие размытые линии. В некоторых случаях вещества с очень маленькими кристаллитами, например голи аморфной окиси железа, дают очень широкие диффракционные линии, которые с большим трудом можно отличить от фона беспорядочно отраженного рентгеновского излучения [8]. Поскольку многие катализаторы приготовляются методами, обусловливающими образование относительно аморфных структур с сильно развитой поверхностью, их рентгенограммы получаются слабыми и расплывчатыми и даже качественный анализ по рентгенограммам представляет большие трудности. Смесь малых количеств кристаллического вещества с большим количеством почти аморфг ного вещества может дать диффракционную картину только кристаллического вещества. Интенсивность диффракпионных линий увеличивается с ростом порядкового номера атомов, образующих кристаллическую решетку. В отработанных железных, кобальтовых или никелевых катализаторах синтеза углеводородов из окиси углерода и водорода обычно нельзя установить характеристическиа линии углерода, даже если он присутствует в значительных количествах. Однако углерод, присутствующий в виде карбидов, можно обнаружить, поскольку расстояния между отражающими плоскостями из атомов металлов в карбидах обычно отличаются от этих расстояний в чистом металле. [c.37]



Смотреть страницы где упоминается термин Рентгеновский анализ поверхности железа: [c.116]    [c.15]   
Физическая химия Том 2 (1936) -- [ c.428 ]




ПОИСК





Смотрите так же термины и статьи:

Анализ поверхности



© 2024 chem21.info Реклама на сайте