Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Аппаратура и методические особенности

    Реально (в эксперименте) может наблюдаться меньшее число экспоненциальных членов. Это прежде всего связано с методическими особенностями регистрации кинетической кривой. Так, при использовании наиболее распространенного спектрофотометрического метода необходимы заметные спектральные различия компонентов реакции. Кроме того, существенные ограничения накладывает временная разрешающая способность установки. Экспериментально определить характеристическое время можно лишь при условии, что оно превышает мертвое время используемой аппаратуры. Эти ограничения приводят к тому, что наблюдаемое на опыте число экспоненциальных членов позволяет оценить лишь минимальное число промежуточных соединений, принимающих участие в реакции. [c.204]


    Капиллярная хроматография является одним из наиболее мощных средств анализа многокомпонентных смесей. Использование хроматографических колонок диаметром 0,1—1,0 мм при длине 50—100 м и более с эффективностью в несколько сотен тысяч теоретических тарелок дает возможность разделять близкие по свойствам вещества, например изомеры и соединения различного изотопного состава. Широкое распространение этого метода в практике научных исследований и промышленного анализа сдерживается тем, что приготовление высокоэффективных капиллярных колонок требует тщательного выполнения целого ряда тонких методических приемов, а их применение в анализе предъявляет весьма высокие требования к газохроматографической аппаратуре, в особенности к детектирующим устройствам и системам ввода проб. Соответствующие сведения приведены в многочисленных журнальных статьях и не всегда доступны. [c.3]

    Наиболее сложные методические задачи возникают в случае определения пределов взрываемости паро-газовых смесей, содержащих легко конденсирующийся компонент, при общем давлении, заметно большем атмосферного. Парциальное давление парообразного компонента здесь часто превышает давление его насыщенного пара при комнатной температуре. Для составления такой смеси необходимо термостатировать всю без исключения аппаратуру и коммуникации при температуре, большей точки росы для данного компонента. В противном случае холодный участок установки, как бы мал он ни был, будет играть роль обратного холодильника. В нем начнется и будет непрерывно протекать конденсация парообразного компонента, и правильная дозировка окажется невозможной. Термостатирование аппаратуры для исследования паро-газовых смесей часто применяют при определении пределов взрываемости, и всякий раз его осуществление связано с различными осложнениями, в особенности в отношении измерения давления парогазовой смеси. Исчерпывающего, практически приемлемого решения этой задачи нет до настоящего времени. Трудности возрастают с повышением температуры кипения компонентов смеси. [c.55]

    Хроматографический метод анализа стал находить применение в энергетике значительно позже, чем в других отраслях промышленности. Причиной некоторого отставания хроматографии в энергетике явилось многообразие жестких требований, предъявляемых к анализу продуктов горения, которые представляют собой сложную многокомпонентную систему. Особенности, присущие продуктам горения, потребовали серьезных теоретических и методических разработок, без которых оказалось невозможным создать методику и аппаратуру, удовлетворяющую требованиям энергетики. Такие работы были проведены специалистами ЭНИН, ЦКТИ, ОРГРЭС, ВТИ и ряда электростанций, а их результаты публиковались в разное время в периодической печати. [c.3]


    Естественно, что фракционирование по столь широкому кругу параметров реализуется путем использования достаточно разнообразных методических подходов и аппаратуры. Тем не менее, одна принципиальная особенность остается неизменной для всех этих подходов, что и позволяет объединит ) их в одну категорию хроматографических методов. В любом из них можно обнаружить двухфазную систему, в которой одна фаза неподвижна, а другая перемещается относительно нее с некоторой скоростью в одном определенном направлении. Неподвижная фаза остается неизменной, заполняя полость трубки (хроматографической колонки ) или фиксируясь на поверхности стеклянной или пластиковой пластинки иногда ее основу образует фильтровальная бумага или пленка ацетилцеллюлозы. Подвижная фаза непрерывно обновляется, поступая в систему с одного ее конца и покидая с другого. Молекулы компонентов исходной смеси веществ распределяются между двумя фазами в соответствии со степенями своего сродства к ним. На каждом участке неподвижной фазы это распределение стремится к состоянию динамического равновесия, которое непрерывно нарушается вследствие перемещения подвижной фазы. В результате постоянно идущего перераспределения молекул вещества между фазами они мигрируют в направлении течения подвижной фазы. Скорость такой миграции тем меньше, чем больше сродство молекул к неподвижной фазе. Распределение между фазами происходит независимо для каждого компонента смесн веществ. Еслп соотношения сродства к двум фазам у молекул разных компонентов смеси не одина- [c.3]

    Особенно интенсивно приступили к исследованиям и разработкам в области АЭ в середине 60-х годов в связи с насущной необходимостью создания систем предэксплуатационного и эксплуатационного контроля особо ответственных технических объектов - корпусов ракет и ядерных реакторов, трубопроводов АЭС, других крупных инженерных сооружений. Достоинство систем АЭ-конт-роля и диагностики - возможность регистрации сигналов, возникающих достаточно далеко от преобразователя, что позволяет не проводить сканирования объекта, присущего обычным УЗ-методам контроля. Поэтому АЭ-системы практически безынерционны и потенциально более надежны из-за отсутствия перемещения преобразователей. Эти достоинства послужили основой для широкого развертывания работ по созданию АЭ-систем эксплуатационного контроля объектов и связанных с ними методических и аппаратурных разработок и исследований самого явления. Однако само явление АЭ и причины, его порождающие, оказались более сложными, чем считалось в 60-х годах. По-видимому, конец 70-х годов следует рассматривать как начало второго этапа исследований в области АЭ, когда была осознана вся сложность проблем, возникающих при разработке АЭ-систем контроля, создана исследовательская аппаратура, накоплен определенный экспериментальный материал, создана база для оперативной автоматической обработки данных, достаточная для решения как исследовательских, так и технических проблем. [c.161]

    Характерной особенностью большинства опытов малого практикума является проведение их с малыми количествами веществ — граммами и их долями и в объемах порядка 1—5 мл, что позволяет существенно экономить материалы и время, а во многих случаях и упростить применяемую аппаратуру. Показательность и методическая ценность результатов опыта при этом отнюдь не снижаются. В то же время операции с небольшими количествами веществ требуют аккуратности, тщательности и соблюдения чистоты, т. е. вырабатывают у студентов практические навыки, полезные для их последующей работы по любой специальной дисциплине.  [c.14]

    В предлагаемом руководстве описывается аппаратура и техника, методические и теоретические особенности основных методов (весового и объемного) количественного микрохимического и ультрамикрохимического анализа. [c.10]

    В зависимости от специфических особенностей данного производства, технологические лаборатории работают либо на модельной аппаратуре, воспроизводящей в малых масштабах производственное оборудование, либо на нормальном производственном оборудовании, либо, наконец, воспроизводят технологический процесс в целом или частях, пользуясь комплектом обычных в лабораторной практике приборов и аппаратуры. Независимо от того, каким из этих способов работают технологические лаборатории, они могут вести свои исследования, лишь опираясь на группу методических лабораторий, могущих наряду с самостоятельным исследованием выполнять также и контрольные функции по отношению к исследованию, ведущемуся технологической лабораторией. Комплексный характер центральных заводских лабораторий вытекает из этой необходимости. Нужно подчеркнуть, что для нормальной работы технологических лабораторий чрезвычайно важно четкое разделение контрольных операций, производимых центральными лабораториями по производству, от тех же операций по исследовательским работам. При отсутствии такого разделения и твердо закрепленных за исследовательским контролем людей, — исследовательская работа неизбежно будет тормозиться и отставать. Если масштабы исследовательской работы достаточно велики, то предпочтительно прикреплять небольщие контрольные группы непосредственно к исследовательским группам под общим руководством лиц, возглавляющих последние. [c.9]


    Анализ работы комбинированных систем пылеулавливания отмечает их исключительно высокую производительность и степень очистки, которая, как правило, превышает 90%. Тем не менее, когда возникает вопрос о выборе конкретной аппаратуры для работы в условиях определенного производства, технологи оказываются в затруднительном положении, поскольку не всегда ясно, какой конструкции отдать предпочтение. Затруднения вызваны отсутствием методического материала, определяющего специфику применения методов сравнительной оценки эксплуатационных качеств, надежности и долговечности воздухоочистительной аппаратуры с учетом специфических особенностей производства. [c.173]

    ВИДИМОГО или ультрафиолетового света (V), которым мы освещаем вещество, то ясно, что частота рассеянного света (V ) лишь на несколько процентов отличается от частоты падающего, т. е. лежит также в области видимого или ультрафиолетового света. Таким образом, в новом методе— методе комбинационного рассеяния — мы должны располагать источниками видимого (или ультрафиолетового) света (>) и пользоваться при изучении рассеянного света спектральной аппаратурой, рассчитанной на регистрацию тоже видимого (или ультрафиолетового) света (V ), т. е. не нуждаемся в гораздо более сложной и трудно доступной аппаратуре, необходимой для непосредственного наблюдения инфракрасных частот. Инфракрасные же частоты молекулы мы вычисляем по разности двух частот V и V, лежащих в гораздо более доступной области видимых или ультрафиолетовых частот. В этом огромное методическое преимущество нового метода отыскания колебательных частот молекулы, преимущество, обеспечивающее ему широкий успех. Правда, в последнее время чрезвычайный прогресс в построении аппаратуры для инфракрасной спектроскопии сделал последнюю гораздо более доступной и распространенной, чем четверть века тому назад, но и до сих пор метод комбинационного рассеяния является более простым, особенно когда речь идет о низких колебательных частотах, соответствующих инфракрасным линиям в 40 и более микрон. [c.23]

    Для корректного описания основных физических явлений и понимания трехмерной картины вихревого движения в сложных турбулентных течениях необходима информация не только о поле осредненных скоростей, но и о распределении всех компонент тензора напряжений Рейнольдса. Как отмечалось выше, подобная информация также важна при совершенствовании и развитии приемлемых расчетных методов этого класса течений. Однако определение всех компонент напряжений Рейнольдса представляет собой весьма непростую задачу, решение которой требует тщательной отработки методики эксперимента, соответствующего оборудования и определенного опыта и навыков в работе с аппаратурой для измерения турбулентности. Это в особенности относится к исследованиям пространственного сдвигового течения в угловых конфигурациях, где наличие твердых границ (граней) вызывает повышенную чувствительность течения к внесению всякого рода возмущений, например, от державок, обтекателей, стоек и т.п., которые могут быть источником дополнительных методических погрешностей. За неимением эффективных бесконтактных оптических методов диагностики, нередко ограничиваются определением (интегральной по спектру) продольной компоненты пульсаций скорости, измерение которой представляет собой менее трудную в техническом отношении задачу, тем более что и по поведению этой компоненты можно, по крайней мерс на качественном уровне, судить о свойствах исследуемого течения. [c.125]

    В книге рассматриваются методы проведения каталитических, фотохимических и электролитических реакций органических сое-динеии11. Она состоит соответственно из трех глав. В гл. I дано описание аппаратуры для проведения каталитических реакции, путей ее применения, изложены методы приготовления катализаторов, а также методические особенности проведения каталитических реакций гидрирования, дегидрирования, изомеризации, полимеризации, конденсации, алкилироваиия и др. В гл. II рассматриваются фотссенсибнлизированные окисление и восстановление, реакции, протекающие с участием кетонов, альдегидов, азотистых соединений и соединений с ненасыщенными связями, а также молекулярные перегруппировки, цепные реакции и т. д. Описана применяемая в фотохимии аппаратура и, в частности, источники излучения. В гл. III даны сведения по электролитическим реакциям с большим числом примеров их осуществления в тщательно составленных таблицах систематизирован обширный материал с указанием выходов. [c.4]

    Описание аппаратуры, методов приготовления катализаторов и методические особенности проведения каталитич. р-ций гидрирования, дегидрирования, изомеризации, полимеризации, конденсации, алкилирова-ния, дезаликил нрования, окисления, гидратации, и дегидратации, катализа на ионообменных смолах. [c.44]

    Описанию современной хрэматографической техники (колонок, насосов, детекторов, коллекторов фракций и др.) также посвящена отдельная глава. Наряду с рассмотрением принципов работы этих устройств сюда включены и сопоставляются данные каталогов по последним (на конец 1983 г.) моделям соответствующей аппаратуры, особенно многочисленным для высокоэффективной хроматографии при высоком давлении. В этой же главе приведены подробные рекомендации по общим для всех вариантов хроматографии методическим приемам подготовке колонок, внесению препаратов, осуществлению элюции, детектированию фракций и др. [c.4]

    Спектроскопия ЯМР высокого разрешения как наиболее информативный и мощный метод структурных и дагаамических исследований столь глубоко пронизывает все химические дисциплины, что без овладения ее основами нельзя рассчитывать на успех в работе в любой области химии. Поразительная особенность этого метода необычайно быстрое его развитие на протяжении всех последних 45 лет с момента открытия ЯМР в 1945 г. События последних 10 лет завершились полным обновлением методического арсенала и аппаратуры ЯМР. Основу приборного парка сейчас составляют спектрометры, оснащенные мощными сверхпроводящими соленоидальными магнитами, позволяющими создавать постоянные и очень однородные поля напряженностью до 14,1 Т. Каждый из таких приборов представляет собой сложный измерительно-вычислительный комплекс, содержащий помимо магнита и радиоэлектронных блоков одрш или дна компьютера, обладающие высоким быстродействием, большими объемами оперативной памяти и дисками огромной емкости. Импульсные методики возбуждения и регистрации сигналов с последующим быстрым фурье-преобразованием окончательно вытеснили режим непрерывной развертки, доминировавший в ЯМР до конца 70-х годов. Как правило, получаемая спектральная информащ1я перед ее отображением в виде стандартного спектра подвергается сложной математической обработке. На несколько порядков возросла чувствительность приборов. Методы двумерной спектроскопии и другие методики, реализующие сложные импульсные последовательности при возбуждении систем магнитных ядер, кардинально изменили весь методический арсенал исследователей и открыли перед ЯМР новые области применений. Эти новые и новейшие достижения уже нашли свое отражение в нескольких монографиях, появившихся за рубежом и в переводах на русский язык. Но они рассчитаны иа специалистов с хорошей физико-математической подготовкой. Между тем подавляющее большинство химиков-экспериментаторов ие обладают такой подготовкой. Более того, для практического приложения современного ЯМР вполне достаточно ясного понимания лишь основных физических пришдапов поведения ансамблей магнитных ядер при воздействии радиочастотных полей. Это понимание обеспечивает химику правильный выбор метода [c.5]

    Результаты АСА используют для создания— уточнения модели и характеристик физического процесса изучения особенностей источника физического процесса изучения влияния внешних и внутренних факторов на физический процесс уточнения методики исследований. Результаты АСА должны быть представлены в легко обозримом виде, разрешающем без значительных усилий осознать получение сведений и сделать правильные выводы. Они должны быть представлены объективно, без тенденциозности в их толковании (за или против теории либо гипотезы, которую приемлют или отвергают исследователи, во всей полноте возможных, на первый взгляд противоречивых, данных). Должны быть даны оценки методических и инструментальных погрешностей, тщательно показано, что в полученных данных нет аппаратурных эффектов , качественно меняющих картину из-за искажений, вносимых измерительной аппаратурой, помехами и т. п. Материалы, содержащие результаты вторичной (третичной) обработки данных АСА, должны быть компактно изложены, содержать критическое обобщение данных первичной обработки результатов, сопоставление с данными других исследований, выполненных по той же или иной методике должен быть предусмотрен доступ 148 [c.148]

    Приведенные здесь задания на выполнение типовых лабораторных работ в практикуме вакуумной техники составлены по следующей схеме 1) цель работы 2) аппаратура 3) содержание работы 4) предупреждения 5) расход времени. Здесь же даны методические рекомендации по выполнению этих работ, а также описания особенностей эксплуатации вакуумного обо1 удования, инструкции по измерению быстроты откачки высоковакуумных агрегатов инструкция по запуску титаново-испарительных насосов пояснение относительно измерения давлений в охлажденных вакуумных системах, а также схемы лабораторных установок. [c.169]

    Важной особенностью АК ЭМПИРИК является то, что он позволяет проводить и записывать на магнитный реп ст-ратор экспертные процедуры вне методического цента экспертизы с лоследующей обработкой записей этих процедур в МЦЭ на автоматизированном комплексе. Это достигается наличием в АК ЭМПИРИК переносной регистрирующей аппаратуры и рассмотренных выше пультов, которые также имеют переносную конструкцию, и соответствующими организационными и программны.ми методами. [c.187]


Смотреть страницы где упоминается термин Аппаратура и методические особенности: [c.204]    [c.370]   
Смотреть главы в:

Физические методы исследования в химии -> Аппаратура и методические особенности




ПОИСК







© 2024 chem21.info Реклама на сайте