Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Заряд электрода

    Чтобы получить электрокапиллярные кривые, можно применять ртутный электрод, так как ртуть при соприкосновении с раствором заряжается положительно. На границе ртуть — раствор возникает двойной электрический слой поверхностное натяжение уменьшается за счет электростатического отталкивания зарядов. Если положительный заряд ртути постепенно уменьшать, то поверхностное натяжение возрастает и при заряде, равном нулю, достигает максимума. Если далее придавать поверхности ртути отрицательный заряд и постепенно увеличивать его абсолютную величину, то поверхностное натяжение начнет снижаться. Эту зависимость выражают в виде электрокапиллярных кривых (рис. 51). Форма электрокапиллярных кривых и потенциал нулевого заряда яо определяются составом раствора, особенно наличием в нем ионов, способных адсорбироваться на поверхности электрода и образовывать двойной электрический слой или же вызывать изменение его структуры. Так, адсорбционный двойной электрический слой обусловливает определенные скачки потенциалов яо при отсутствии заряда электрода. При адсорбции катионов потенциал нулевого заряда Яо более положителен, чем потенциал нулевого заряда Яо,раствора в отсутствие катионов. Наоборот, адсорбция анионов смещает потенциал нулевого заряда яо" в область более отрицательных значений. [c.171]


    Как и в случае химического источника э.лектрической энергии, электрод, на котором происходит восстановление, называется катодом э.лектрод, на котором происходит окисление, называется анодом. Но при электролизе катод заряжен отрицательно, а анод — положительно, т. е. распределение знаков заряда электродов противоположно тому, которое имеется при работе гальванического элемента. Причина этого заключается в том, что процессы, протекающие при электролизе, в принципе обратны процессам, идущим при работе гальванического элемента. При электролизе химическая реакция осуществляется за счет энергии электрического тока, подводимой извне, в то время как при работе гальванического элемента энергия самопроизвольно протекающей в нем химической реакции превращается в электрическую энергию. [c.282]

    А. Н. Фрумкиным было показано, что образование двойного электрического слоя на границе металл/раствор обусловлено величиной и знаком разности потенциалов между металлом и раствором и, когда заряд электрода по отношению к раствору становится равным нулю, двойной ионный слой исчезает. Электродный потенциал такого электрода (с нулевым [c.427]

    Уравнение (11.40) по своему физическому смыслу эквивалентно модели, в которой двойной электрический слой в присутствии адсорбированных молекул органического вещества представлен в циде двух параллельно соединенных конденсаторов, причем между обкладками одного из них находятся молекулы воды, а между обкладками другого — молекулы органического вещества. Иначе говоря, заряд электрода q складывается из зарядов этих двух конденсаторов и q  [c.246]

    Таким образом, величина и знак скачка потенциала на границе металл — раствор соли зависят от природы металла, активности ионов в растворе и температуры. Поэтому металл может заряжаться относительно раствора как положительно, так и отрицательно. При концентрациях растворов, используемых в элементе Даниэля (1 М), цинковая пластинка заряжается отрицательно, а медная — положительно (в последнем случае часть ионов из раствора переходит на металл и около поверхности пластины имеется некоторое избыточное количество анионов). Но если очень сильно уменьшить концентрацию ионов меди в растворе, например, связав в комплексы путем добавления K N, то знаки заряда электродов изменятся на противоположные. В этом случае при работе элемента окисляться будет медь, а восстанавливаться — ионы Zn +. [c.217]


Рис. 172. Влияние поверхностно-активных катионов на распределение потенциала в ионной обкладке двойного электрического слоя при отрицательном заряде электрода Рис. 172. <a href="/info/638336">Влияние поверхностно-активных</a> катионов на <a href="/info/308053">распределение потенциала</a> в <a href="/info/10600">ионной обкладке двойного</a> <a href="/info/2476">электрического слоя</a> при <a href="/info/17611">отрицательном заряде</a> электрода
    Заряд электрода является функцией потенциала электрода и степени заполнения поверхности электрода молекулами адсорбата. В этом случае справедливо соотнощение [c.311]

    Влияние заряда электрода на адсорбцию и на кинетику реакций электровосстановления можно выразить также количественно, [c.449]

    Процесс электроосаждения взвеси парафина из растворов подчиняется закономерностям, аналогичным тем, которые имеются при процессах выделения парафина отстоем нод действием силы тяжести или центробежной силы. Разница заключается в том, что движущей силой осаждения являются в данном случае силы, обусловленные взаимодействием зарядов частиц парафина с зарядом электродов, величину которых необходимо брать в основу при определении скорости осаждения и вывода относящихся к пей уравнений. [c.135]

    С =Сг. Однако в достаточно разбавленных растворах (0,01 н. и меньше) при малых зарядах электрода (т. е. вблизи потенциала нулевого заряда) емкость диффузной части двойного слоя становится меньше емкости плотной [c.539]

    Р. А. Колли, рассматривавший электрод, погруженный в электролит, как конденсатор, впервые высказал мысль о затрудненности отделения ионов от молекул электролита у электрода как о причине медленного заряда электрода, производящего поляризацию последнего (1878 г.). [c.253]

    Э. д. с. гальванической цепи, записанной для обратного направления этой реакции, приписывается отрицательный знак. Он показывает, что элемент может работать, лишь когда данная реакция осуществляется в направлении, противоположном указанному в записи цепи. При этом он будет обладать той же величиной э. д. с., но знаки заряда электродов будут обратными. Течение же реакции в направлении, указываемом записью цепи, в этом случае не только не может служить источником работы гальванического элемента, но, наоборот, требует затраты работы извне, т. е. требует приложения э. д. с. извне и может осуществляться путем электролиза. [c.420]

    Работа железного электрода улучшается также при введении в массу гидрата закиси никеля и небольших количеств сульфидной серы. Первая добавка поддерживает активную массу в дисперсном состоянии. Сохраняя на поверхности большое число активных центров, гидрат закиси никеля облегчает процесс заряда электрода. Сера способствует увеличению скорости реакции разряда благодаря уменьшению пассивации железа. Однако на процесс заряда сера оказывает отрицательное влияние, блокируя активные центры на поверхности частиц закиси железа. [c.90]

    Эта скорость невелика, однако скорость капельки резко возрастает, когда последняя достигает одного из электродов, создающих электрическое поле. Капелька, несущая определенный электрический заряд, коснувшись противоположно заряженного электрода, разряжается и приобретает дополнительный свободный электрический заряд, одноименный с зарядом электрода. В результате приобретения дополнительного заряда капелька начинает двигаться от электрода в противоположном прежнему направлении. Причем скорость этого движения значительно выше прежней, поскольку величина приобретенного заряда также значительно больше. [c.51]

    Проводимость пыли обычно увеличивают путем увлажнения горячего газа перед входом его в электрофильтр, не допуская, однако, снижения температуры газа ниже точки росы. Очень хорошо проводящая пыль мгновенно отдает свой заряд и, воспринимая заряд электрода, отталкивается от него. Это также при- [c.340]

    Заряд электрода сопровождается концентрационной поляризацией, обусловленной изменением состава вещества в реакционной зоне как в твердой фазе, так и в электролите. Выравнивание состава более окисленной массы активного вещества, находящегося в поверхностном слое частиц, и менее окисленного вещества, находящегося в глубине частиц, происходит за счет диффузии протонов в твердой фазе из глубинных слоев к поверхности. Этот процесс протекает с небольшой скоростью. [c.85]

    На рис. 14,6 пpивeдeнf>I кинокадры, отображающие изменение эмульсии под воздействием постояннйго электрического поля с характерным скоплением капель вблизи фигурного электрода. Эти кадры получены при подключении электрода к минусовому вьшоду вьшрямителя. Такие же изменения со скоплением капель около фигурного электрода происходят и при его подключении к плюсовому выводу. Перемещение капель в сторону фигурного электрода, наблюдаемое в обоих случаях, независимо от знака заряда электрода, связано с тем, что собственные заряды капель невелики, их взаимодействие с полем незначительно и на капли действуют в основном только силы, обусловленные неоднородностью электрического поля. Под влиянием этих сил капельки и втягиваются в зону большей непряженности поля. Под влиянием этих же сил капельки перемещаются в сторону большей напряженности поля и при применении переменного поля - рис. 14, д. [c.59]


    Электрохимическая кинетика, однако, должна учитывать и такие факторы, которые типичны только для иее и ие играют какой-либо роли в условиях обычных химических реакций. Прежде всего ЭТО нотенциал электрода, оказывающий чрезвычайно сильное в.оз-действие не только на скорость, но и на направление протекания электрохимических реакций и далее на природу ее продуктов. Кро.ме нотенциала электрода на про гекание электрохимических реакций существенное влияние оказывает заряд электрода, который 1 нервом ирнближеинн можно оце)1ить но величине потенциала в прнведепнон шкале /I. И. Антропова. [c.291]

    При титровании азотнокислого серебра в сосуде I раствором хлористого натрия концентрация ионов серебра уменьшается. В соответствии с этим уменьшается положительный заряд электрода. Концентрация ионов при титровании уменьшается вначале слабо, а вблизи точки эквивалентности происходит резкое изменение концентрации. Это приводит к резкому изменению напряжения в описанном гальваническом элементе. Таким образом, скачок напряжения (скачок потенциала) является признаком точки эквивалентности. [c.436]

    Из уравнения (XX, 6) видно, что определяющей суммарную емкость двойного электрического слоя является меньшая из величин Сг и Сд. Емкость плотной части двойного слоя определяется размерами адсорбированных ионов и способностью их деформироваться под действием электрического поля. Поэтому при постоянной температуре Сг является функцией только заряда поверхности и не зависит от концентрации электролита. Обычно величины емкости плотного слоя лежат в пределах 20-4-40 мкф/см . В отли-чие 01 Сг, емкость диффузной части двойного слоя существенно зависит от концентрации электролита (уменьшается с разбавлением, а также с уменьшением заряда электрода). Если концентрация электролита высока, то емкость диффузной части двойного слои значительно превышает емкость слоя Гельмгольца. В этом случае [см. уравнение (XX, 6)] [c.539]

    Знаки электродов в данной схеме указаны для случая, если [Н+]ст больше [Н+] исследуемого раствора. Если это условие не выполняется, знаки заряда электродов в цепи будут обратными. Э.д.с. двойной хингидронной цепи [c.252]

    К положительному электроду — аноду — подходят отрицательно заряженные ионы — анионы, отдающие свои заряды электроду. Примером анодной реакции может служить следующая  [c.361]

    Величину энергии активации электрохимической реакции можно разложить на две составляющие. Одна из них Е отвечает тому случаю, когда скачок потенциала между раствором и металлом равен нулю. Вторая /S.E соответствует изменению энергии активации за счет влияния электрического поля при заряжении электрода до потенциала ф. Реакция катодного восстановлення Ох + ге" Red протекает при отрицательном заряде электрода, что способствует ускорению прямой реакции и замедлению обратной. Энергия активации прямой реакции уменьшается, а обратной увеличивается по сравнению с ее значением прн потенциале, равном нулю. Поэтому [c.506]

    Задание. Для электрохимического элемента, составленного из стандартных кадмиевого и хлорного электродов, определите ЭДС, знак заряда электродов н напишите уравнения реакций, протекающих на каждом электроде (диффузионным потенциалом пренебрегите). [c.242]

    Из определения ирлведениой шкалы следует, что ф-иотенциал служит приближенной мерой заряда электрода по отпошешио к раствору. [c.253]

    Физические свойства электретов существенно зависят как от особенностей диэлектриков (их полярности и электропроводности), так и от режима изготовления (например, напряженности поля, температуры и времени поляризации). В зависимости от напряженности электрического поля можно получать из одного и того же вещества и гомо- и гетероэлектреты (совпадающие и несовпадающие по полярности со знаком заряда электрода) с различной плотностью поверхностных зарядов. Гетерозаряд обусловлен, прежде всего, ориентационной дипольной поляризацией, а также микроскопическими неоднородностями и ионной электропроводимостью диэлектрика. Образование гомозаряда связано с тем, что при высоких напряжениях вследствие искрового пробоя воздушного зазора заряды переходят с электрода на образец полимера. Электретный эффект в твердых диэлектриках имеет объемный характер. В так называемом незакороченном состоянии электрет все время находится в электрическом поле, в результате чего происходит рассасывание объемного заряда. При плотном закорачивании электрета его внутреннее поле равно нулю [58, гл. I]. Время жизни электрета зависит от электропроводности как его самого, так и среды, а также от качества закорачивания. Поскольку возникновение электретного состояния связано с поляризацией и ориентацией, ему должно сопутствовать существенное увеличение оптической анизотропии. При кратковременной поляризации полимеров (в частности, ПММА) их оптическая анизотропия практически не проявляется. После резкого возрастания оптической анизотропии в интервале времен от 3 до 6 ч дальнейшее увеличение времени поляризации практически не повышает анизотропию, что свидетельствует о завершении ориентации. [c.253]

    Теория Фрумкина подробно излагается в ряде монографий (см. список литературы в конце книги), и здесь мы ограничимся лишь упоминанием введенного ею разграничения между модельным, пли свободным, зарядом д, определенным в разделе 10.2.2, и полным, или термодинамическим, зарядом электрода 0. Термодинамический заряд отвечает количеству г лектричества, которое иужно подвести к электроду для обеспечения постоянства его потенциала при сохранении неизменными химических потенциалов всех компонентов системы электрод — электролит. Величина полного заряда для обратимых электродов определяется уравнением, аналогичным по форме первому уравнению Лилимана [c.260]

    Уравнения электрокапиллярной кривой названы так потому, что выражаемые ими зависимости экспериментально проверялись Лнпиманом с иомощь о прибора, называемого капиллярным электрометром (рис. П. 9). При исследовании зависимости поверхностного натяжения от потенциала двойного электрического слоя в качестве одной из фаз наиболее удобно применять металлическую ртуть, поверхиостиое натяжение которой легко измерить, например, капиллярным методом, и в то же время удобно изменять межфазный потенциал с помощью внешнего источника тока. Кроме того, ртуть являете. почти идеально поляризуемым электродом, т. е. таким электролом, на котором не протекают электродные реакции при прохол., еини тока, и поэтому изменение заряда электрода вызывает только изменение его потенциала. Это обусловлено тем, что благородные металлы почти совсем не отдают своих ионов в раствор. Малое содержание их в растворе делает невозможным и обратную реакцию (восстановления). [c.50]

    Для жидкого металла (например, ртути) потенциал нулевого заряда электрода можно определить, измерив зависимость пограничного натяжения от потенциала электрода. В самом деле, при образовании двойного слоя электрические заряды металлической поверхности (безразлично, какого знака) взанмпо отталкиваются, и это отталкивание уменьшает пограничное натяжение а металла. Изменяя сообщенный металлу потенциал ср (относительно другого электрода), изменяют и плотность заряда двойного слоя и пограничное натяже11ие ртути. На рис. XX, 7 изображена зависимость пограничного натяжения ртути от потенциала — так называемая электрокапиллярная кривая. [c.539]

    В зависимости от напряженности электрического поля можно получать из одного и того же вещества гомо- и гетероэлектреты (совпадающие и не совпадающие по полярности со знаком заряда электрода) с различной плотностью поверхностных зарядов. Гетерозаряд обусловлен прежде всего ориентационной дипольной поляризацией, а также микроскопическими неоднородностями и ионной электропроводностью диэлектрика. Образование гомозаряда связано с тем, что при любых напряжениях вследствие искрового пробоя воздушного зазора заряды переходят с электрода на образец полимера. [c.193]

    Степень очистки газа в электрофильтре в значительной степени зависит от проводимости пыли. Если частицы хорошо проводят ток, а силы адгезии (сцепления) ненелики, то заряд отдается мгновенно, а сама частица получает заряд электрода. Возникает кулоновая сила отталкивания, и частица вновь может попасть в газовый поток. Это приводит к увеличению уноса пыли из электрофильтра и понижению степени очистки. Если пыль плохо проводит ток, то она прижимается силой поля к электроду и образует на нем плотный слой отрицательно заряженных частиц, который отталкивает приближающиеся частицы того же знака, т. е. противодействует основному электрическому полю. Напряжение в порах слоя осевшей пыли может превысить критическое и вызывать коронирование газа у осадительного электрода — обратную корону . Это явление значительно снижает эффективность очистки газа. [c.240]

    Согласно Фрумкину, двойной слой при адсорбции ПАВ на поверхности электрода можно представить в виде двух параллельных конденсаторов, один из которых заполнен адсорбатом, а второй растворителем. В этом случае заряд электрода можно вглразить соотношением [c.311]

    Безразмерный критерий Rei характеризует направление индуцированного дипольного момента частиц. При Rei < Va знак поляризационного заряда каждой полуповерхности частицы совпадает со знаком заряда того электрода, к которому эта >полуповерхно1 ть обращена если Rei > Va, то знак заряда электрода и обращенной к нему полуповерхности частицы противоположны. При Rei — Va индуцированный дипольный момент частицы равен нулю. [c.157]

    Мы НС рассматриваем процессы, происходящие с катионом калия (К К), поскольку ого окислительные способности слишком малы. Равновссис сильно сдвинуто влево. Концентрация восстановленной формы практически ноль. Металлический калий не существует в водных растворах. Роль восстановления - окисления калия в изменении заряда электрода на несколько порядков меньше роли процессов окисления и восстановления иода. [c.164]


Смотреть страницы где упоминается термин Заряд электрода: [c.6]    [c.260]    [c.447]    [c.539]    [c.613]    [c.516]    [c.214]    [c.319]    [c.111]    [c.516]    [c.27]    [c.30]    [c.33]   
Двойной слой и кинетика электродных процессов (1967) -- [ c.26 , c.28 , c.42 ]




ПОИСК





Смотрите так же термины и статьи:

Взаимодействие заряд электрода

Влияние знака заряда электрода относительно раствора на скорость процесса

Влияние различных факторов на потенциал нулевого заряда Состав электрода

Горбуновой и Данкова роль заряда электрода

Графов, Э. В. Пекар. Использование липпмановских зарядов обратимого электрода для нахождения параметров электродного импеданса

Емкость плотного слоя и заряд электрода

Заполнение поверхности заряд электрода

Заряд поверхности электрода

Заряд электрода в присутствии адсорбированных

Заряд электрода внутренней плоскости

Заряд электрода вычисление

Заряд электрода дискретность

Заряд электрода и ф потенциал

Заряд электрода ионные компоненты

Заряд электрода ионов

Заряд электрода как электрическая переменная

Заряд электрода незаряженного адсорбата

Заряд электрода объемный

Заряд электрода полный и след

Л е йки с. О влиянии образующихся в процессах разряда и заряда солевых или окисных слоев на пассивацию аккумуляторных электродов

Полные заряды обратимого электрода и эффективный перенос заряда на отдельных адсорбционных стадиях

Понятие о заряде электрода. Потенциалы нулевого полного и свободного заряда

Потенциалы нулевого заряда фн, выраженные относительно нормального водородного электрода

Потенциалы нулевого заряда электродов. Р. Перкинс, Т.Андерсен Роль заряда поверхности в электродных процессах

Процессы при заряде и разряде железного электрода

Процессы при заряде и разряде кадмиевого электрода

Процессы при заряде и разряде окисно-никелевого электрода

Прямое измерение заряда электрода

Связь емкости с зарядом электрода, межфазным натяжением и относительным поверхностным избытком

Точка нулевого заряда жидких электродов

Точка нулевого заряда твердых электродов

Электрод заряд и емкость

Электрод знак заряда

Электрод точка нулевого заряда

Электрохимическое выделение металлов роль заряда электрода

Электрохимическое катодное выделение металлов заряда электрода

также Электрод с жидкой с заряженными лигандами



© 2025 chem21.info Реклама на сайте