Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сшивание физическое радиационное

    Физическое (радиационное) сшивание [c.337]

    НИЙ [30, 132, 136, 258, 259] физических свойств облученных полимеров и сополимеров винилхлорида позволяют считать преобладающим в одних случаях процесс образования поперечных связей, в других — деструкции [260]. Хотя поливинилхлорид относили к полимерам, преимущественно деструктирующимся при облучении [32], в дальнейших исследованиях было установлено, что при облучении в отсутствие воздуха поливинилхлорид в основном сшивается [261]. Наиболее достоверной характеристикой эффективности процессов сшивания поливинилхлорида является значение Сдс = 2,15 ( пс = 23 эв) [262, 263]. Нагревание облученного в вакууме поливинилхлорида или обработка его веществами, вызывающими набухание, даже в отсутствие кислорода воздуха способствуют образованию поперечных связей [264]. Наличие процессов деструкции доказывается уменьшением характеристической вязкости на начальных стадиях облучения, предшествующих же латинизации [263, 265]. Если бы эффективность процессов деструкции при облучении в обычных условиях не была значительна, процесс радиационного сшивания поливинилхлорида мог бы получить практическое применение. Однако процесс сшивания осуществляют путем привитой радиационной сополимеризации поливинилхлорида с тетрафункциональными мономерами, введенными в полимер [266-270]. [c.191]


    Радиационное сшивание полимеров как метод улучшения физических и механических свойств изучают в течение многих лет [175]. Действительно, радиационно-сшитый полиэтилен уже в течение многих лет выпускается в промышленных масштабах. Как упоминалось выше, облучение полимеров в присутствии мономера (набухшего в мономере или даже не набухшего, см. разд. 7.2 и 7.4) является также общепринятым методом получения привитых сополимеров [176, 363, 698, 699]. Интересный класс полимерных систем был получен при попытке увеличения эффективности сшивания и прививки за счет введения в систему, подвергающуюся облучению, способных к сшиванию полифункциональных мономеров. [c.195]

    С одной стороны, попытки сопоставления радиационно-химического выхода сшивания полимеров различного химического строения без учета их надмолекулярной структуры неправомерны, так как, хотя физические свойства полимеров и зависят в конечном счете от строения их молекул, проявляются они именно через надмолекулярную организацию. Вместе с тем степень кристалличности не является адекватной характеристикой надмолекулярной организации, что, естественно, приводит к противоречивости выводов, полученных на основании использования различных экспериментальных данных, например, при сопоставлении степени кристалличности и эффективности радиационного сшивания различных полиолефинов. [c.87]

    Процессы образования в полимерах поперечных связей под действием частиц высокой энергии и ионизирующего излучения представляют большой научный интерес в сравнении с процессами деструкции (см. гл. VIП-В), вызываемыми этими же воздействиями. Многие синтетические полимеры нашли практическое применение после того, как они были сшиты под действием радиационного облучения. Кроме того, образование поперечных связей дает возможность понять природу химических процессов, протекающих при облучении и могущих привести к улучгпенпю физических свойств полимера. Эти положения особенно бесспорны для процесса сшивания полиэтилена под действием радиации. До открытия методов радиационного сшивания не было известно простых способов образования поперечных связей в полимерах этого типа. Последующее развитие химических методов сшивания полиэтилена не снизило значительных преимуществ радиационного процесса. Однако первоначальным стимулом развития радиационно-химических исследований полиэтилена являлась нерспек-тива изучения этих процессов на полимере простого строения. [c.166]


    Установление взаимосвязи между молекулярными и физическими свойствами полимеров, в которых при облучении протекают процессы деструкции и сшивания, позволило достигнуть значительного успеха в понимании механизма этих процессов. С дальнейшим совершенствова-нрюм как физических, так и химических методов исследования радиацион-но-химические процессы в полимерах будут становиться все более попятными. [c.197]

    Детально исследовано влияние радиационного облучения на физические свойства полиэтилена 2409-2426 Отмечено, что в результате облучения повышается стойкость полиэтилена к деформации при нагревании, а также к растрескиванию. При этом не происходит ухудшения электрических свойств, прочности и других ценных свойств полиэтилена 9 Например, у полиэтилена типа марлекс-50 прочность на разрыв под влиянием р-об-лучения (доза 50-10 рентген) изменяется от 290 до 320 кГ/см . Более эффективным оказалось у-облучвние. При дозе 10 чЮ рентген прочность на разрыв возрастала до 500 кГ/см , а ори дозе 100-10 рентген — до 585 кГ/см . Установлено, что в результате облучения происходит образование поперечных связей в полиэтилене, способствующее улучшению физико-механических свойств (теплостойкости, эластичности и др.) 24ю. Изучение анизотропных изменений в системе фибриллярных макромолекул с весьма высокой осевой ориентацией в процессе сшивания полимера при воздействии ионизирующего облучения показало, что длина в изотропном состоянии в результате процесса сшивания возрастает с ростом степени сшивания 2 ч. Для расплава получены значительно большие удлинения. При облучении полиэтилена в расплавленном состоянии размеры кристаллитов неограниченно уменьшаются с увеличением дозы облучения Скорость роста сферолитов при равной степени переохлаждения не зависит от дозы облучения температуры плавления полиэтилена (марлекс-50) составляли при облучении дозами О, 20, 40 и и 100 мрентген— 138, 128, 121 и 113° С соответственно 416 Описано влияние радиации на индекс расплава 2417. [c.286]

    Обсуждались также другие зависимости между радиационным сшиванием и деструкцией (или одним из этих процессов) и такими физическими свойствами полимеров, как набухание, модуль эластичности и вязкость. Они рассмотрены в упомянутых выше статьях и книгах по этому вопросу. Для исследования процессов сшивания и деструкции макромолекул существенное значение имеют физические методы. С другой стороны, излучение может быть использовано как средство для изучения физико-химических свойств полимеров, в особенности для получения информации о распределении молекулярных весов (В36 В37, В108, С44, С45, С48, С49, С53, С55, 864]. [c.181]

    Некоторые физические эффекты, вызываемые радиационным сшиванием полимеров, уже обсуждались (стр. 179), но в полиэтилене, кроме того, проявляются изменения модуля эластичности ниже точки плавления, плотности, поглощения в инфракрасной области, прозрачности, ядерного магнитного резонанса и плавкости, которые можно объяснить исчезновением при облучении кристаллических областей [В1, В104, С67, С70, 059, Р46, К17, 572]. Исчезновение кристаллических областей связано с тем, что поперечные связи вызывают внутреннее напряжение в материале. При комнатной температуре напряжение мало влияет на кристалличность [С64, 584], но, если нагреть облученный полиэтилен выше температуры плавления кристаллов, а затем вновь охладить, то рекристаллизация затрудняется [ У38, ЛУ45]. Подобные эффекты наблюдаются во время облучения, если оно происходит при температуре, при которой многие из кристаллитов плавятся, например в ядерном реакторе. Эффект выражен тем резче, чем большее число кристаллитов плавится во время облучения [С47]. Другая причина влияния излучения на кристалличность состоит в том, что сшивание, в особенности вызываемое излучением с высокой линейной плотностью ионизации, эффективно разрывает кристаллиты на более мелкие единицы [564, 572]. Одновременно с процессом сшивания из облучаемого полиэтилена идет значительное выделение газа. Газ в основном состоит из водорода. Образование водорода линейно зависит от дозы вплоть до нескольких сот мегарад и в противопо-.ложность сшиванию не зависит от температуры в пределах от —200 до -Ы00° [С65]. Количественные данные приведены в табл. 47. Очевидно, что выход очень близок к выходу водорода из низкомолекулярных насыщенных н-углеводородов (табл. 19, стр. 91). [c.186]

    Различия в технологии, необходимые для успешного применения углеродных саж и силикатных пигментов в качестве усилителей эластомеров, отражают различия в химии поверхности этих лигментсв, влияющие главным образом на процесс поперечного сшивания (за исключением радиационной вулканизации ). Чисто физические аспекты усиления пигментами типа рассмотренных в работе по-видимому, могут быть сходными для обоих типов пигментов. [c.354]


Смотреть страницы где упоминается термин Сшивание физическое радиационное : [c.61]    [c.203]    [c.180]    [c.74]   
Химия и технология газонаполненных высокополимеров (1980) -- [ c.334 , c.337 , c.338 , c.446 , c.463 ]




ПОИСК





Смотрите так же термины и статьи:

Сшивание



© 2025 chem21.info Реклама на сайте