Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Молекулярно-массовое распределение

    Были выявлены закономерности связей между важнейшими элементами молекулярной структуры эластомеров и их физическими и вязкоэластическими свойствами в широком интервале температур. При этом были установлены количественные корреляции между температурой стеклования и микроструктурой каучуков данного химического строения, изучен характер влияния молекулярно-массового распределения на температурный коэффициент эластичности для ряда каучуков, а также исследованы кристаллизационные процессы в эластомерах и пути их регулирования (см. гл. 2, 4). [c.15]


    Высокомолекулярные соединения независимо от способа их получения характеризуются той или иной степенью полидисперсности по молекулярным массам. Общепринятым способом расчета молекулярно-массового распределения линейных поликонденсационных полимеров является статистический метод, предложенный Флори [20, 21], в основе которого лежит постулат о независимости реакционной способности макромолекул от их длины. [c.168]

    Таким образом, необходимо наличие в металлируемом соединении достаточно подвижного водорода. Растворители эфирного типа значительно облегчают реакцию переноса цепи и, кроме того, сами часто являются объектами металлирования, что служит еще одним доводом к отказу от использования их в процессах получения жидких каучуков методом каталитической полимеризации. Однако в некоторых случаях перенос активного центра возможен также в среде неполярных растворителей. Так, эффективный перенос цепи осуществляется при синтезе бутадиен-стирольных жидких каучуков, если процесс проводят в толуоле в присутствии алкоголятов калия, в качестве добавок сближающих константы сополимеризации. При исследовании кинетики полимеризации 1,3-пентадиена было показано, что если полимеризация транс-формы мономера подчиняется закономерностям полимеризации с литийорганическими соединениями, то цас-форма ведет себя иначе во всех растворителях эффективный перенос на мономер обусловливает расширение молекулярно-массового распределения и получение полимера с молекулярной массой более низкой, чем расчетная [17], [c.418]

    Приведенные выше данные свидетельствуют о непосредственной связи технических свойств полибутадиенов с их молекулярными параметрами микроструктурой, молекулярной массой, молекулярно-массовым распределением и разветвленностью полимерных цепей. Однако качество СК до настоящего времени оценивается большим числом показателей, характеризующих технологические и физико-механические свойства резиновых смесей и их вулканизатов. Оценка качества каучуков, и в частности бутадиеновых, по их молекулярным параметрам представляется более точной и объективной, но количественное определение молекулярной массы, ММР и разветвленности требует применения сложной (и дорогостоящей) физической аппаратуры, трудоемких методов и поэтому не нашло применения в промышленной практике. В последние годы был проведен цикл исследований, показавших, что достаточно [c.195]

    Скорость протекания этих двух конкурирующих реакций (деструкции и структурирования) определяется рядом факторов степенью распределения тиурама вг латексе, скоростью набухания частиц полимера в растворителе, применяемом для получения эмульсии или дисперсии тиурама Е, скоростью взаимодействия тиурама с полисульфидной группой, продолжительностью и температурой щелочного созревания латекса. Наряду с указанными факторами в значительной степени влияет глубина полимеризации с увеличением конверсии хлоропрена выше определенного предела возрастает тенденция к структурированию полимеров [17, 26]. Аналогично влияет и повышение температуры полимеризации, способствующей в большей степени увеличению скорости структурирования, чем деструкции полихлоропрена. Указанные факторы оказывают также влияние на молекулярно-массовое распределение полимера [26]. ------- [c.374]


    Молекулярно-массовое распределение является особенно важным показателем для жидких каучуков, поскольку они структурируются по концевым функциональным группам и, следовательно, ММР полимера обусловливает характер распределения расстояний между узлами сетки в эластомере. По-видимому, оптимальные свойства характерны для полимеров с наиболее узким ММР [11], хотя прямых экспериментальных данных пока не имеется. [c.434]

    Молекулярно - массовое распределение при трехмерной поликонденсации для различных значений /. [c.170]

    Молекулярная масса и молекулярно-массовое распределение. Важнейшим молекулярным параметром, определяющим физические и технические свойства полимеров, в частности, их способность к высокоэластической деформации, является длина молекулярных цепей, которая обычно характеризуется степенью полимеризации Р, т. е. числом мономерных звеньев, входящих в цепь, или молекулярной массой М, равной М = Рт, где т — молекулярная масса мономерного звена. Величина молекулярной массы эластомеров обычно имеет порядок 10 —10 , хотя в последнее время для получения различных резиновых изделий все шире используются так называемые низкомолекулярные полимеры с М порядка 10 —Ю".  [c.21]

    Благодаря статистическому характеру разветвленности число узлов в макромолекуле (при данной величине р) пропорционально ее молекулярной массе. Поскольку возникновение в данной макромолекуле разветвлений влечет за собой ускорение ее роста (растет одновременно несколько концов) и, соответственно, увеличение вероятности дальнейшего разветвления, процесс разветвленности приводит к расширению молекулярно-массового распределения. При этом наиболее высокомолекулярные фракции содержат наибольшее число ветвей. [c.25]

    Молекулярно-массовое распределение каучука является в этом случае бимодальным (рис. 5). Частицы микрогеля, составляющие свыше 80% всего полимера по массе, имеют молекулярную массу (2—8)-10 и содержат 100—1000 узлов. Средневязкостная молекулярная масса золь-фракции составляет (1,5—5) 10 . [c.67]

    Улучшение физико-механических показателей резин, совершенствование их структуры связано с использованием регулярно-построенных полимеров, имеющих низкое значение Гс, состоящих из гибких макромолекул высокой молекулярной массы и имеющих узкое молекулярно-массовое распределение. При этом после вулканизации получаются совершенные сеточные структуры, которые характеризуются также узким распределением длин между узлами сетки и высокой подвижностью сегментов цепи. [c.92]

    Обрыв цепи. Обрыв полимерной цепи может происходить разными путями рекомбинацией, диспропорционированием, а также при взаимодействии с примесями или специальными добавками— регуляторами молекулярной массы и молекулярно-массового распределения полимера. [c.142]

    Наиболее важными молекулярными параметрами, которые определяют технологические свойства полимера, являются молекулярная масса, молекулярно-массовое распределение, степень разветвления и сшивания. СКИ с широким молекулярно-массовым распределением характеризуется лучшими технологическими свойствами по сравнению с аналогичными полимерами, отличающимися более узким ММР. [c.208]

    Вязкость тиоколов, как и любых других олигомеров, определяется молекулярной массой полимера, его структурой, степенью разветвленности, молекулярно-массовым распределением [24]. Для линейных жидких тиоколов, полученных на основе ди(р-хлор-этил)формаля, была установлена линейная зависимость логарифма вязкости от среднемассовой молекулярной массы в степени 0,5, аналогичная ранее выведенной Флори для линейных сложных полиэфиров. Эта зависимость позволяет определить среднемассовую молекулярную массу линейных полимеров по вязкости (в Па-с), измеренной при 25°С по следующей формуле  [c.559]

    Таким образом, функция молекулярно-массового распределения для разветвленных полимеров значительно шире, чем для линейных. [c.169]

    Молекулярно-массовое распределение полимеров хлоропрена, полученных при различных конверсиях мономера [c.376]

    На рис. 4 показано молекулярно-массовое распределение для нескольких величин /, при этом степень завершенности реакции выбиралась из расчета постоянной среднечисленной степени поликонденсации, равной 80. С ростом функциональности мономера распределение становится уже [21, с. 211]. [c.171]

    Рост прочности у синтетического полиизопрена без полярных групп с большой молекулярной массой и узким молекулярно-массовым распределением можно достаточно полно объяснить в рамках теории вязкоупругости линейных полимеров [23]. Высокие напряжения при деформации сажевых смесей стереорегулярных модифицированных полимеров, как было показано, связаны с их способностью к кристаллизации. Роль стереорегулярности в кристаллизации полимеров очевидна [24, с. 145—173 25 26, с. 205— 220]. Полярные группы увеличивают общее межмолекулярное взаимодействие и вязкость системы, усиливают взаимодействие с наполнителем за счет образования химических связей и адсорбционного связывания, которое способствует и увеличению напряжения при деформации и собственно кристаллизации, а также повышают суммарную скорость кристаллизации вследствие ускорения ее первой стадии — зародышеобразования. [c.235]


    В настоящее время имеется уже достаточно материала для обсуждения этих вопросов. Исследования, проведенные во ВНИИСК [14, с. 33—71 15], позволили оценить влияние молекулярной массы и молекулярно-массового распределения каучука СКИ-3 на когезионную прочность его сажевых смесей. Было показано, что когезионная прочность невулканизованных сажевых смесей типа брекерной изменяется от 0,05—0,06 до 0,3 МПа при изменении вязкости по Муни каучука СКИ-3 от 40 до ПО. Аналогичную закономерность повышения когезионной прочности (до 0,5 МПа) с увеличением молекулярной массы наблюдали и у каучука СКИЛ (полиизопрен, полученный с литиевым катализатором) [16]. В то же время смеси на основе глубоко деструктирован-ного вальцеванием НК [вязкость по Муни (Б-1-4-100) меньше 40] обладают достаточно высокой когезионной прочностью — около 1,0 МПа. [c.226]

    Возможность осуществлять обрыв и передачу полимерной цепи под влиянием специальных соединений широко используется в практике для целенаправленного регулирования молекулярной массы М и молекулярно-массового распределения. Применяемые для указанных целей соединения получили название регуляторов, [c.246]

    Синтез термоэластопластов осуществляется с помощью катализаторов, образующих так называемые живые цепи, сохраняющие способность к росту в течение неограниченного времени [4]. В качестве катализаторов такого типа промышленное признание получили литийорганические соединения. Они позволяют получать полимеры с более регулярной микроструктурой эластомерного блока, чем при использовании органических соединений других щелочных металлов, и тем самым обеспечить термоэластопластам лучший комплекс свойств. Литийорганические инициаторы, используемые для синтеза термоэластопластов, должны обладать высокой скоростью инициирования, обеспечивающей получение полимеров с узким молекулярно-массовым распределением. С этой целью обычно применяется вгор-бутиллитий [5]. [c.284]

    Свойства двойных сополимеров зависят от содержания в них звеньев этилена и пропил-ена, их распределения в молекулярной цепи, молекулярной массы, молекулярно-массового распределения, кристалличности и композиционной неоднородности, а тройных сополимеров — также и от природы третьего сомономера, содержания непредельных звеньев, равномерности их распределения и разветвленности молекулярной цепи. [c.311]

    Агрегатное состояние и свойства полиизобутилена определяются средней молекулярной массой и молекулярно-массовым распределением макромолекул. Вследствие этого известны жидкие низкомолекулярные полиизобутилены — П-1, П-10, П-20, оппанол [c.336]

    Взаимодействие живого полимера с примесями, содержащими активный атом водорода, приводит, с одной стороны, к образованию моно- и нефункциональных полимерных цепей, с другой стороны, к расширению молекулярно-массового распределения, так как часть цепей теряет способность к росту. Совре.менные методы очистки мономеров и растворителей, используемых в каталитической полимеризации, позволяют достаточно успешно избежать этой причины нарушения функциональности [2], особенно если процесс полимеризации осуществляется в непрерывном варианте. [c.416]

    Синтез сегментированных или блокполиуретанов, как и соответствующая реакция диизоцианата и низкомолекулярного диола -(жесткий сегмент), осуществляется посредством конденсацноннвй полимеризации. Это неизбежно выражается в широком молекулярно-массовом распределении как сегментов, так и полимера в целом [52, 53]. В связи с этим заслуживают внимания данные по влиянию молекулярно-массового распределения на свойства сегментированных полиуретанов [54]. Объектами исследования служили системы, в которых действие водородных связей было сведено к нулю, так как наличие их могло затруднить трактовку экспериментальных результатов. Молекулярная масса эластичного сегмента менялась от 1003 до 1744. Полидисперсные жесткие сегменты получались ступенчатой реакцией 1,4-бисхлорформиата и пиперазина. Полиуретан затем синтезировали из предварительно сформированных жестких и полиэфирных сегментов. Учитывая, что промышленный политетрагидрофуран, использованный авторами, имел широкое молекулярно-массовое распределение, образцы с узким молекулярно-массовым распределением готовились из отдельных фракций. [c.541]

    Влияние молекулярно-массового распределения каучуков на [c.442]

    Механизм, способы синтеза и свойства различных полиэфиров подробно освещены в литературе. Достаточно полную библиографию по этим вопросам можно найти в монографиях [5, с. 295 8, с. 36 9, с. 41 10, с. 45]. Наименее изученными являются молекулярные характеристики олигомеров (молекулярно-массовое распределение, среднечисленная и среднемассовая функциональность и др.), хотя не вызывает сомнения важное значение их для полу чения полиуретанов с заданными свойствами. [c.525]

    Заслуживают внимания данные рассмотрения зависимости молекулярно-массового распределения бифункционального преполимера различной полидисперсности и распределения цепей между узлами разветвления в реакциях образования трехмерных структур [49]. Весьма неожиданным оказалось влияние молекулярной массы в диапазоне (2,3 5,0) Ю" сегментированных эластомеров на температуру стеклования, сопротивление многократным деформациям, раздиру и гистерезис. Вероятно, причину аномального поведения этих систем следует искать в реструктурировании и упорядочений самих сегментов [50]. [c.539]

    Из данных спектров релаксации было установлено, что молекулярно-массовое распределение сегментов не сказывается на температурном переходе, обусловленном локальным движением метиленовых групп эластичного сегмента, температура стеклования которого определяется содержанием жесткого блока, а не молекулярно-массовым распределением. Но при идентичных составах полимеры с узким молекулярно-массовым распределением характеризуются более высокой температурой стеклования, что, вероятно, объясняется лучшим разделением фаз и кристаллизацией. [c.541]

    В настоящее время считается общепризнанным, что вязко-упругие свойства полимеров целиком зависят от их релаксационного спектра [19]. С другой стороны, релаксационный спектр линейных полимеров однозначно связан с характером их ММР. Отсюда вытекает важный принцип молекулярного подхода к оценке технологических свойств резиновых смесей — технологические свойства резиновых смесей на основе непластицирую-щихся каучуков практически полностью определяются молекулярно-массовым распределением исходного полимера, т. е. в первом приближении, ето средней молекулярной массой и индексом поли-дисперсности, М /М . К этой группе каучуков относятся титановый цис-полибутадиен (СКД), двойной сополимер этилена с пропиленом (СКЭП), гранс-полипентенамер (ТПП), а также полимеры литиевой полимеризации и некоторые другие эластомеры. [c.79]

    Генетическим связям УВ нефти и ОВ посвящена работа В В. Ильинской [8]. О генетической связи между нефтью и ОВ пород для верхнепалеозойских отложений Днепровско-Донецкой впадины свидетельствуют одинаковое молекулярно-массовое распределение -алканов и изо-преноидов и соотношение между ними в области С27—С31, близкие значения п/ф и соотношений между -алканами и изостеранами, тетра- и пен-тациклическими нафтенами, мононафтено-нафталинами и фенантренами. [c.31]

    Проведенные исследования позволили установить характер влияния условий проведения процесса полимеризации на молекулярно-массовое распределение и содержание разветвленных макромолекул и сшитых структур для основных типов каучуков, получаемых методом эмульсионной полимеризации (сополимеры бутадиена со стиролом и сс-метилстиролом) и полимеризацией в растворе под действием комплексных катализаторов (цыс-поли-бутадиен и чыс-полиигопрен) и предложить рациональные пути получения этих каучуков с оптимальными молекулярными параметрами (см. гл. 3, 4). [c.15]

    Важнейшей из характеристик полимерных сеток является число эластически активных цепей в единице объема полимера V. Эластически активной называют цепь линейного строения, заключенную между такими двумя соседними узлами сетки, от каждого из которых к поверхности образца исходят по меньшей мере три независимых ветви [7]. У вулканизованных каучуков обычно V = 10 — — 100 моль/м . V является функцией либо общего числа сшивок, молекулярной массы и молекулярно-массового распределения исходных макромолекул, если сетка образуется путем вулканизации, либо степени завершенности реакции и функциональности мономеров, если сетка формируется в процессе полифункциональной поликонденсации. [c.42]

    При отсутствии агентов обрыва или переноса растущей полимерной цепи под влиянием лптийалкилов образуются полиизопрены с очень узкпм молекулярно-массовым распределенпем, которое приближается к распределению Пуассона. Такой характер ММР свидетельствует о быстром инициировании реакции полимеризации. В тех случаях, когда скорости стадий инициирования и роста цепи сопоставимы (полимеризация литийбутилом в цикло-гексане [39]) молекулярно-массовое распределение расширяется до значений Ми,/М = 1,5 — 2,5. [c.210]

    На основе синтетического полиизопрена могут быть получены смеси с высокой когезионной прочностью только в случае применения полимера с чрезвычайно большой молекулярной массой (около 1,5-10 ) и узким молекулярно-массовым распределением, причем расширение MiMP даже при сохранении больших значений средней молекулярной массы приводит к падению когезионной прочности (рис. 1). [c.227]

    Для того чтобы резины на основе жидких каучуков, сохраняя преимущества на стадии переработки, были сопоставимы по своим свойствам с вулканизатами высокомолекулярных каучуков, необходимо выполнение следующих требований. Жидкий каучук должен быть линейным, иметь высокую степень функциональности, узкое молекулярно-массовое распределение (ММР) и распределение по типу функциональности (РТФ), иметь достаточно реакционноспособные группы, способные к реакциям удлинения цепи. Для достижения цели, определенной в этих требованиях, необходимо, чтобы жидкий каучук не имел разветвленности. Есть предположение, что по аналогии с высокополимерами разветвленность может быть причиной ухудшения таких показателгй резин, как теплообразование и выносливость [69]. [c.442]

    Как и все эмульсионные каучуки, БЭФ, БСЭФ и БНЭФ являются статистическими сополимерами, характеризующимися щи-роким молекулярно-массовым распределением. Температура стеклования каучуков БЭФ составляет примерно —80 °С, БСЭФ-30 —65°С и БНЭФ-26 40 °С. [c.406]

    Было предложено использовать в качестве катализатора продукты взаимодействия металлического лития с триалкилвинилси-ланами. Процесс гладко протекает в среде неполярного растворителя с образованием дилитийорганических соединений почти с количественным выходом. Однако вследствие большой разницы констант инициирования и роста, образующийся с таким катализатором полимер обладает очень широким молекулярно-массовым распределением (отношение Л и,/Мп = 20—30). [c.414]

    В работах советских исследователей была показана возможность использования этого соединения при полимеризации сопряженных диеновых углеводородов в среде органического растворителя [25]. На основе 1,3-бутадиена получены жидкие полибутадиен-диолы (ОВД), отличающиеся высокой бифункциональностью и имеющие узкое молекулярно-массовое распределение [26, 27, с. 109—113 28]. Об этом свидетельствуют результаты фракционирования полибутадиендиолов, представленные ниже  [c.422]

    Первая стадия процесса синтеза уретанфункциональных полимеров проводится в условиях, обеспечивающих получение наиболее узкого молекулярно-массового распределения изоцианатного форполимера. Это достигается использованием диизоцианатов с различной реакционноспособностью изоцианатных групп, исключением катализатора реакции изоцианат — гидроксил, проведением синтеза при умеренных температурах. Взаимодействие изоцианатного форполимера с функциональным спиртом может протекать не обычно, если функциональная группа расположена достаточно близко к гидроксильной и оказывает влияние на ее реакционную способность. [c.432]

    Когда сетка полиуретана подвергается деформации растяжения, то противодействие внешнему напряжению оказывают ориентированные участки между сшивками. Оборванные цепи релак-сируют независимо от приложенного напряжения. При строгом соблюдении требований по функциональности исходных соединений обычно получается уретановый эластомер с пространственной структурой, близкой к идеальной. Но в реальных системах наблюдаются отклонения от оптимально сформированной сетки. Возникают полусвязанные и даже вообще свободные цепи, создающие неэффективную часть сетки [58]. Здесь уместно еще раз напомнить данные по сопротивлению разрыву полиуретанов на основе поли-оксипропиленгликолей. Несомненно, что низкие физико-механические показатели этих полиуретанов есть следствие нерегулярности структуры и отсутствия обратимой кристаллизации при растяжении. Кроме того, промышленный полиэфир молекулярной массы 2000 обычно содержит 4—5% (мол.) монофункциональных молекул, образующих не несущие нагрузки цепи и золь-фракцию полимеров [33, с. 33]. Наличие монофункциональных соединений в пространственной структуре уретановых эластомеров влияет не только на изменение соотношения эффективных и неэффективных цепей, но в некоторой степени определяет молекулярную массу и молекулярно-массовое распределение сегментов. При этом свободные [c.543]

    Молекулярно-массовое распределение жидких тиоколов определяется реакциями межцепного обмена. Процесс получения жидких полимеров с концевыми 5Н-группами, осуществляемый химической деструкцией 5—5-связей и протекающий по статистическому закону, должен привести к равновесному распределению по молекулярным массам, а для линейных полимеров — к наиболее вероятному распределению Флори. Однако, в связи с тем, что этот процесс осуществляется на границе раздела фаз, распределение может быть случайным и равновесное распределение достигается лищь в результате реакций межцепного обмена, присущих этому классу полимеров [10, с. 477]. [c.560]


Смотреть страницы где упоминается термин Молекулярно-массовое распределение: [c.5]    [c.206]    [c.211]    [c.213]   
Смотреть главы в:

Полиэтилен полипропилен и другие полиолефины -> Молекулярно-массовое распределение

Полиэтилен, полипропилен и другие полиолефины -> Молекулярно-массовое распределение

Кинетика полимеризационных процессов -> Молекулярно-массовое распределение

Химия и технология синтетического каучука Изд 2 -> Молекулярно-массовое распределение


Основы химии высокомолекулярных соединений (1976) -- [ c.43 , c.117 , c.118 ]

Технология пластмасс на основе полиамидов (1979) -- [ c.73 , c.76 ]

Физика полимеров (1990) -- [ c.0 ]

Практическое руководство по синтезу и исследованию свойств полимеров (1976) -- [ c.81 , c.84 , c.131 ]

Процессы структурирования эластомеров (1978) -- [ c.31 , c.37 , c.111 , c.219 , c.251 ]

Введение в физику полимеров (1978) -- [ c.10 ]

Реология полимеров (1977) -- [ c.181 ]

Энциклопедия полимеров Том 3 (1977) -- [ c.0 ]

Энциклопедия полимеров Том 2 (1974) -- [ c.286 , c.460 ]

Полимерные смеси и композиты (1979) -- [ c.19 ]

Физико-химия полимеров 1978 (1978) -- [ c.0 ]

Компьютеры Применение в химии (1988) -- [ c.104 ]

Сверхвысокомодульные полимеры (1983) -- [ c.14 ]

Химия эластомеров (1981) -- [ c.0 ]

Химия и технология плёнкообразующих веществ (1981) -- [ c.0 ]

Производство поликапроамида (1977) -- [ c.0 ]

Методы кинетических расчётов в химии полимеров (1978) -- [ c.10 , c.11 , c.51 , c.55 , c.60 , c.66 , c.78 , c.79 , c.81 , c.89 , c.93 , c.97 , c.98 ]

Химическая стойкость полимеров в агрессивных средах (1979) -- [ c.85 , c.94 , c.188 ]

Химия и технология пленкообразующих веществ (1978) -- [ c.35 , c.36 , c.37 , c.53 ]

Физико-химические основы процессов формирования химических волокон (1978) -- [ c.63 ]

Термическая стабильность гетероцепных полимеров (1977) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Анализ молекулярно-массового распределения

Ананьева Л. И., Семина Г. Н., Юдина И. П., Панкина А. М. Определение молекулярно-массового распределения оксиэтилированных спиртов

Влияние молекулярно-массового распределения на наибольшую ньютоновскую вязкость

Влияние молекулярно-массового распределения полимера на процессы деструкции

Влияние молекулярной массы и молекулярно-массового распределения полимеров

Высокоэластичность и молекулярно-массовое распределение

Дисперсия молекулярно-массового распределения

Дифференциальная кривая молекулярно-массового распределения

Зависимость вязкости от молекулярной массы для полимеров с узким молекулярно-массовым распределением

Исследование кинетики деструкции как метод определения молекулярно-массового распределения

Кинетика поликонденсации и молекулярно-массовое распределение

Кривые молекулярно-массового распределения

Лигносульфонаты молекулярно-массовое распределение

Льюиса молекулярно-массового распределения

Макромолекулы молекулярно-массовое распределение

Массовая

Методы определения молекулярно-массового распределения

Методы расчета молекулярно-массового распределения по кинетическим данным

Молекулярная масса и молекулярно-массовое распределение

Молекулярная масса и молекулярно-массовое распределение натурального каучука

Молекулярная масса и молекулярно-массовое распределение полимера

Молекулярная масса массовое и числовое распределение

Молекулярная масса, молекулярно-массовое распределение и термоокислительное старение полимеров

Молекулярно-массовое распределени

Молекулярно-массовое распределение ММР наиболее вероятное

Молекулярно-массовое распределение ММР олигомеров, определение методом ГПХ

Молекулярно-массовое распределение ММР полимеров, определение методом

Молекулярно-массовое распределение ММР узкое

Молекулярно-массовое распределение в равновесии

Молекулярно-массовое распределение влияние на течение

Молекулярно-массовое распределение кривые распределения

Молекулярно-массовое распределение нолимеров

Молекулярно-массовое распределение определение

Молекулярно-массовое распределение полигексаметиленадипамида

Молекулярно-массовое распределение поликапроамида

Молекулярно-массовое распределение полимера при поликонденсации

Молекулярно-массовое распределение полимеров

Молекулярно-массовое распределение при радикальной полимеризации

Молекулярно-массовое распределение целлюлозы

Молекулярный вес распределение

Моменты молекулярно-массового распределения

Наибольшая ньютоновская вязкость и молекулярно-массовое распределение

Натуральный каучук молекулярно-массовое распределение

Некоторые представления о молекулярной массе и молекулярно-массовом распределении

ОПРЕДЕЛЕНИЕ МОЛЕКУЛЯРНОЙ МАССЫ И МОЛЕКУЛЯРНО-МАССОВОГО РАСПРЕДЕЛЕНИЯ ПОЛИМЕРОВ

Олефины молекулярно-массовое распределение

Определение молекулярно-массового распределения полимера при фракционировании дробным осаждением

Определение молекулярно-массового распределения полимера при фракционировании дробным растворением

Определение молекулярно-массового распределения полимеров

Определение молекулярно-массового распределения. Кривые распределения

Определение молекулярно-массовых распределений и параметров полидисперсности седиментационно диффузионным методом

Определение среднего значения молекулярной массы и молекулярно-массовое распределение

Определение типов соединений в смесях по кривым молекулярно-массового распределения

Особенности течения полимеров узкого и широкого молекулярно-массового распределения

Относительная молекулярная масса и молекулярно-массовое распределение продуктов полимеризации

Оценка молекулярной массы и молекулярно-массового распределения каучуков по их релаксационным характеристикам. А. И. Марей, Сидорович

Поликонденсация и молекулярно-массовое распределение

Полиэтилен высокой плотности молекулярно-массовое распределение, ММР

Полиэтилен молекулярно-массовое распределение

Равновесное молекулярно-массовое распределение

Распределение по молекулярным массам массовое

Расчет молекулярно-массовых распределений олигомеров по степеням полимеризации с использованием эквиденситных изображений тонкослойных хроматограмм

Резолы молекулярно-массовое распределение

Смеси по кривым молекулярно-массового распределения

Способы определения молекулярно-массового и композиционного распределения полимеров по данным ТСХ

Установление молекулярно-массового распределения органических соединений в сложных смесях

Хроматографическое исследование молекулярно-массовых распределений и полидисперсности полимеров

Хроматография определение молекулярно-массового распределения



© 2025 chem21.info Реклама на сайте