Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полиэтилен облучение электронами

    Лоутон и другие [40] недавно показали, что при облучении электронами сшивание в полиэтилене происходит почти исключительно в аморфной части, в то время как образование транс-. [c.126]

    По данным Литтл [15] и Лоутона и других [16], в полиэтилене, подвергающемся действию излучения ядерного реактора или быстрых электронов, преобладает процесс сшивания. Чарлзби 17] опубликовал результаты тщательно выполненного исследования действия излучения ядерного реактора и показал, что облученный полиэтилен не растворяется в горячих органических растворителях и обладает упругостью, подобной упругости каучука, при температурах выше 100—105° — точки плавления кристаллической части. Очень тонкие пленки увеличивали вначале свой вес вследствие окисления поверхности, но затем это компенсировалось за счет потери в весе вследствие выделения водорода — главного летучего продукта. Вес более толстых образцов с самого начала уменьшался, хотя выделение водорода задерживалось вследствие необходимости диффузии через массу полиэтилена. Принималось, что каждый акт отщепления водорода эквивалентен образованию одной поперечной связи образование двойных связей при этом считалось несущественным. [c.111]


    Ядерные излучения используют для получения новых веществ, для улучшения свойств полимеров и т. д. Большой интерес представляет изменение свойств различных материалов под влиянием этих облучений. Например, оказалось, что из предварительно облученного угля легче извлекается частый его спутник германий каучуки вулканизуются без добавок серы полиэтилен становится более устойчивым к нагреванию и органического стекла (см. гл. ХП1) нагреванием и облучением можно получить пенопласт и т. д. Ядерные излучения возбуждают множество цепных реакций. В полупроводниковых кристаллах они увеличивают число различных дефектов, что резко изменяет их свойства, особенно электрофизические. В связи с этим упомянем о чувствительности к излучениям, радиодеталей, применяемых в управляющих и регистрирующих приборах атомных реакторов. Радиолампы меняют параметры незначительно. Полупроводниковые приборы теряют свои свойства уже при малой дозе облучения. Масляные конденсаторы вспучиваются при облучении вследствие разложения масла. Керамические и слюдяные конденсаторы меняют свойства только после длительного облучения. У металлических сопротивлений электрические свойства практически не меняются, а у угольных сопротивление уменьшается. Магнитные свойства силиконового железа, пермаллоя (см. гл. ХИ, 7) и др. ухудшаются. Как видно, электронные приборы можно использовать в полях излучений (в частности и космических) при условии не слишком больших доз облучения и очень осмотрительно. [c.47]

    Для инициирования привитой радиационной сополи-меризации (при темп-рах от —50 до 120 °С) применяют источники различных видов облучения (рентгеновские лучи, 7-лучи, нейтроны, протоны, ускоренные электроны, УФ-лучи). Обычно образуется смесь привитых сополимеров, блоксополимеров и интерполимеров, представляющих по структуре одновременно привитой и блоксополимер. Радиационным методом на поливинилхлорид привиты акрилонитрил, стирол и их смеси (при этом увеличивается теплостойкость), винилацетат, метилметакрилат (повышаются физико-механич. показатели), серу- и азотсодержащие гетероциклич. соединения, этилен- или пропиленсульфид, 4-винилпиридин (улучшается сродство к красителям), бутадиен, метакриловая к-та, виниловые эфиры жирных к-т и др. Мономер может быть привит на поливинилхлорид из газовой фазы и, наоборот, газообразный В. можно привить на различные полимеры (полиэтилен высокой и низкой плотности, полипропилен, нолиизонрен, натуральный каучук, полиэфиры и др.). Эффективность прививки возрастает при введении в реагирующую систему растворителя, не растворяющего растущие цепи прививаемого мономера (гель-эффект Тромсдорфа). [c.226]


    Он пришел к выводу, что около 75% поперечных связей, образующихся в полидиметилсилоксанах при облучении электронами с энергией 800 кэв, можно приписать структурам I и II. вероятно в отнош енин, примерно равном 2 1 соответственно. Остальные поперечные связи принадлежат к структурам, пока ПС выясненным. Результаты Бюхе представляют особенный интерес, так как это, кажется, единственный случай, когда имеется прямое доказательство характера структуры, образующейся в результате сшивания. В отношении структуры поперечных связей, образующихся в облученном полиэтилене, имеется неопределенность вследствие того, что исследование инфракрасных спектров поглощения не дает на это прямых указаний (стр. 118 и сл.). [c.200]

    Каргиным с сотр. [474—476] и другими авторами [477, 478] проведено (электроннографическое и электронномикроскопическое) исследование сферолитных образований в полиэтилене и упорядоченности, возникающей при кристаллизации или ориентации его цепей, для чего пленки полиэтилена растягивались и облучались быстрыми электронами. Показано, что в результате облучения электронами (энергия 75 или 90 кэв) наблюдается аморфизация вещества при сохранении его сферолитной структуры, что объясняется авторами медленным протеканием релаксационных процессов в кристаллических полимерах и образованием сетки при облучении быстрыми электронами. Аналогичное исследование растянутых пленок показало, что при ориентации сохраняется высокая степень кристалличности, хотя имеет место полное разрушение сферолитных образований- [475]. [c.231]

    МОСТЬ скорее всего носит дырочный или электронный характер. Возникающие при облучении т закс-виниленовые связи по отношению к электропроводящим частицам могут играть роль ловушек [56]. Электрическая прочность полиэтилена, сшитого под действием электронов (4 Мэе), не снижается при увеличении температуры до уровня, определяемого теорией характеристической электрической прочности [57]. Это объясняется, по-видимому, стабильностью сетчатой структуры. Радиационное сшивание уменьшает проницаемость полиэтилена для кислорода, азота, углекислого газа и бромистого метила [58], что объясняется снижением коэффициента диффузии. Коэффициент диффузии водяных паров в полиэтилене снижается при радиационном сшивании, однако проницаемость сильно возрастает благодаря увеличению растворимости воды в полиэтилене [59]. Было установлено, что для облученного полиэтилена коэффициенты проницаемости и растворимости в нем различных органических жидкостей при низких температурах выше, а при высоких ниже, чем для исходного полиэтилена [60]. Более высокие растворимость и проницаемость при низких температурах могут быть объяснены разрушением кристаллитов, а пониженные значения этих коэффициентов при высоких температурах — наличием сетчатой структуры. [c.171]

    Кайзер [499, 500] и другие авторы [505—509] исследовали отличия в инфракрасных спектрах полиэтиленов, полученных при высоком и низком давлениях, а также облученных электронами при различных температурах и вытяжках. В спектрах полиэтилена наблюдается дублет 13,7—13,9 мк. Повышение температуры, растяжение и облучение вызывают изменения интенсивностей полос поглощения дублета, связанные с изменением степени кристалличности образцов и в первых двух случаях полностью обратимые. [c.232]

    Пластификация полиэтилена с помощью обычных пластификаторов не удается. После облучения электронами полиэтилен поддается стерилизации его точка размягчения поднимается до 140°. [c.34]

    При облучении полиакрилонитрила у-излучением Со °, а-из-лучением радона и электронами с энергией 250—400 кэв наблюдается газовыделение. Образование газообразных продуктов происходит в результате отрыва атомов водорода, а также боковых и концевых групп полимера. Карповым [211] найдено, что чем выше газовыделение при радиолизе, тем большая доля поглощенной энергии расходуется на отрыв боковых групп, тем меньше процессы деструкции, приводящие к разрыву С—С-свя-зей основной цепи. По величине газообразных продуктов при радиолизе полимеры располагаются в ряд (по увеличению выхода) тефлон — полистирол—полибутадиен—полиакрилонитрил—натуральный каучук — полиизобутилен—поливиниловый спирт—полиметилметакрилат — полиэтилен — полиметакриловая кислота. [c.446]

    Короткие боковые цепи в полиэтилене были предметом ряда публикаций [585—591]. Их изучали методом ИК-спектроскопии, а также путем облучения электронами высоких энергий в сочетании с масс-спектрометрией [587, 588]. При помощи последней методики показано, что короткими боковыми цепями в полиэтиленах высокого давления являются в основном этильные и н-бутильные группы, но также возможно присутствие других коротких боковых цепей. [c.161]

    Словохотова Н. А., Корицкий А. Т., Бубен Н. Я-, О двойных связях в полиэтилене, облученном быстрыми электронами, ДАН СССР, 129, № 6, 1347 (1959). [c.289]


    В кабельном производстве может найти широкое применение полиэтилен, облученный быстрыми электронами. По сравнению с обычным полиэтиленом он обладает повышенной прочностью на растяжение, высокой пробивной напряженностью, большей устойчивостью к действию ароматических и алифатических углеводородов, повышенной теплостойкостью (может длительное время работать при 150° и выдерживать кратковременное нагревание до 300° С). [c.49]

    Использование метода многоступенчатой прививки применительно к пленке из полиэтилена низкой плотности толщиной 100 мкм, облученной электронами на подложке из сухого льда и получившей дозу 1 Мрад, показало, что коэффициент прививки к ней винилацетата после выдержки в ванне с этим мономером при температуре 70° С в течение 5 мин на первой ступени составил, 14% на второй — 29 % на третьей — 51% на четвертой — 91%. Для полимеров с высокой степенью кристалличности, таких, как полиэтилен высокой плотности, время жизни свободных радикалов может быть достаточно большим и без охлаждения основы в процессе облучения, и поэтому рассмотренный метод позволяет получить хорошие результаты [256]. [c.118]

    При том же значении дозы, при котором равновесный модуль впервые начинает отличаться от нуля, в полимере впервые возникает нерастворимая фракция (гель), количество которой продолжает расти с дозой. В точке гелеобразования и после нее полимер при нагревании и размягчении не переходит в вязкотекучее состояние он становится неплавким. Так, полиэтилен обычно теряет кристалличность и размягчается при 110—115° при этом он теряет способность поддерживать напряжение и теряет форму уже под действием собственного веса. Прессованная полиэтиленовая бутыль, например, деформируется и расплывается в бесформенную массу при температурах выще 110—115°. Изделия из полиэтилена, облученные - -лучами или быстрыми электронами, при дозах более 10 мегафэр становятся неплавкими и переходят при температурах ПО—-115° не в вязкотекучее, а в резиноподобное состояние. Они сохраняют свою форму даже при 300°, хотя потеря кристалличности у них происходит примерно при тех же температурах, что и у необлученных материалов. На рис. 17 демонстрируется вид полиэтиленовых бутылей, получивших дозы О, 5, 10 и 20 лгегафзр от электронов с энергией 800 кв, а затем прогретых 15 мин. при 135°. Доза 5 мегафэр дает заметный эффект. Однако требуется по крайней мере 10 (желательно даже 20) мегафэр для получения хорошей термостабильности в данных конкретных условиях. Все эти изменения являются результатом образования сплошной пространственной сетки. Условия создания такой сетки мы рассмотрим более подробно в следующей главе. Если разрывы цепей превалируют над сшиванием, так что сплошная пространственная сетка не образуется, то действие излучений на физические свойства вначале менее заметно, чем при образовании пространственной сетки, но затем проявляется в уменьшении прочности и появлении хрупкости полимера. Политетрафторэтилен теряет свою прочность при облучении - -лучами или электронами. При дозе 10 мегафэр это становится заметно даже при поверхностном осмотре. При дозе 100 мегафэр и выше политетрафторэтилен теряет всю свою прочность и легко крошится. Деструкция растворимых полимеров, например полиметилметакрилата, сопровождается непрерывным уменьшением вязкости растворов, но это не является однозначным критерием деструкции, так как [c.77]

    О преимущественном образовании поперечных связей в полиэтилене при облучении в атомном реакторе [15, 30, 31 ] и бомбардировке быстрыми электронами [32] упоминалось в ранних работах. [c.169]

    При объяснении этого эффекта следует иметь в виду, что в условиях опыта интенсивность электронного пучка на несколько порядков больше интенсивности f излучения, а потому химические изменения в полиэтилене под действием - -излучения происходят гораздо медленнее, чем нри облучении быстрыми электронами. Заметные изменения в спектре полиэтилена при действии - -излучения наблюдались лишь при облучении его в течение 100 часов, в то время как спектр полиэтилена, облученного быстрыми электронами в течение 10 мин. [1], уже заметно отличался от спектра необлученного. Молекулы воды или кислорода, адсорбированные в поверхностных слоях полиэтилена, расходуются на взаимодействие с образующимися в процессе облучения двойными связями. Одним из возможных механизмов окисления полиэтилена является присоединение кислорода по двойным связям  [c.211]

    В работах по деструкции полимеров под воздействием электронов [44] показано, что в разветвленном полиэтилене этильные и бутильные радикалы расположены через каждые 100 углеродных атомов. При облучении полипропилена образуется метан, что свидетельствует [c.206]

    Исследована кинетика гибели алкильных свободных радикалов, образованных при облучении полиэтилена низкой плотности и полипропилена (при температуре 0° С) электронами с энергией 2 мэв показано, что кинетика гибели радикалов в полиэтилене может быть описана с помощью кинетического уравнения второго порядка [c.76]

    Исследование колебательных спектров полиэтилена показало, что при облучении быстрыми электронами в полиэтилене происходят глубокие изменения химической структуры возникают двойные углерод-углеродные связи, растет разветвленность цепей, полиэтилен из кристаллического состояния переходит в аморфное. При облучении на воздухе полиэтилен окисляется, вследствие этого возникают различного типа карбонильные и эфирные группы. [c.205]

    Установлено, что полиэтилен, кристаллизованный из расплава, и полиэтилен, полученный кристаллизацией из разбавленного раствора, значительно отличаются в отношении действия облучения быстрыми электронами с энергией 1 Мэв. Предполагают, что причиной этого является различная упаковка слоев поли- [c.285]

    В ультрафиолетовых спектрах полиэтилена (рис. 6, я и б), облученного быстрыми электронами и ультрафиолетовым светом, в области от 220 до 240 м[1 наблюдается сплошное поглощение, в то время как необлученный полиэтилен в этой области прозрачен. [c.200]

    В инфракрасном спектре полиэтилена, облученного быстрыми электронами, наблюдается с наибольшей интенсивностью полоса в области 964 см, соответствующая группе ВСН = HR (рис. 1 и 2). Такое различие в конечных продуктах фотохимических и радиационно-химических реакций можно объяснить тем, что радикалы и молекулы, образующиеся при радиационных процессах, находятся на более высоком энергетическом уровне возбуждения и поэтому более реакционноспособны, чем радикалы и молекулы, образующиеся при фотохимических процессах. Так как разветвления в полиэтилене сравнительно редки, то реакция (1), а также реакции (4) и (5) будут осуществляться чаще, чем остальные реакции. Энергия разрыва связи С—Н больше, чем энергия разрыва связи С—С, и поэтому по реакции (4) будут распадаться радикалы, обладающие большей энергией, чем это требуется для распада радикала по реакции (5). Следовательно, вероятность распада радикалов по реакции (4) при радиационно-химических процессах больше, чем при фотохимических. Молекул типа ВСН = СНВ в нервом случае будет образовываться больше, чем во втором. Кроме того, при действии ионизирующих излучений на полимер должны идти более интенсивно, чем при фотохимических процессах, реакции полимеризации, обратные реакциям (4), (5), (6) и (7). На это указывает также Бэртон [12]. [c.202]

    По интенсивности полосы поглощения в области 964 см в инфракрасном спектре облученного полиэтилена было рассчитано количество двойных связей, образующихся в полиэтилене при облучении быстрыми электронами .  [c.202]

    Окисление полиэтилена при облучении на воздухе в ядерном реакторе, быстрыми электронами или у-лучами отмечалось в ранних исследованиях [15, 31, 94]. Процессы окисления протекают интенсивнее на поверхности образца и в аморфных участках, где концентрация кислорода поддерживается достаточно высокой. Разряды катушки Тесла и коронные разряды при атмосферном давлении, а также тлеющие разряды при пониженном давлении вызывают окисление поверхности полиэтиленовых пленок и образование в них непредельных групп при этом увеличивается смачиваемость полиэтилена полярными жидкостями [95, 96]. Сопоставление данных об образовании щавелевой кислоты, являющейся одним из продуктов окисления, с теоретическими данными о глубине проникания электрона при коронном разряде позволяет рассматривать механизм процесса как облучение электронами [96]. Раньше считалось, что кислород ускоряет процесс деструкции, а не ингибирует образование поперечных связей в полиэтилене [97]. Последующими работами было показано, что кислород ингибирует процесс образования сшивок, взаимодействуя с промежуточными соединениями [67, 98—100]. При облучении электронами жидкого к-гексана квантовый выход димера Сдимер, равный 2,0, падает практически до нуля при увеличении давления кислорода до 10 ат [101]. При этом основными продуктами реакции являются гексанон-2 и гексанон-3. С образованием в облучаемом полиэтилене карбонильных и гидроперекис-ных групп понижается количество образующихся поперечных связей и пг/ акс-виниленовых групп [100]. Соотношение между количеством образующихся карбонильных групп и /пракс-вииилеиовых звеньев тем выше, чем больше ЛПЭ используемого излучения [67, 94]. Следовательно, повы- [c.174]

    Изменения физических свойств полиэтилена при сшивании изучались осциллографически при низкочастотных динамических воздействиях [50], а также путем оценки величины пластических деформаций [51 ]. При высоких дозах облучения полиэтилена в атомном реакторе могут быть получены образцы, обладающие каучукоподобными свойствами при комнатной температуре [52]. Электропроводность полиэтилена, индуцируемая облучением, пропорциональна мощности дозы в степени 0,75 (у-лучи) [53], 0,7—0,8 (у-лучи) [54], 0,8 0,05 (рентгеновские лучи) [55] и 1,0 (у-лучи полиэтилен предварительно облучен электронами) [54[. Предполагают, что электропроводность полиэтилена, облучаемого у-лучами, имеет ионную, возможно протонную, природу [53]. Наведенная проводи- [c.170]

    Количество разорванных связей, приходящихся на одну поперечную связь (р/а), вычисленное по данным о предельном содержании гель-фракции в полиэтилене, облучавшемся в реакторе, составляет 0,35 [5]. Несколько меньшее значение р/а, равное 0,18—0,20, было вычислено для полиэтилена, облученного электронами, исходя из данных о частичной растворимости интенсивно сшитого полиэтилена [43]. Облучение электронами жидких к-алканов также сопровождается расщеплением углерод-углеродной связи и образованием как низших углеводородов, так и соединений, располагающихся по молекулярному весу между исходными алканами и их димерами [45]. Было установлено, что при облучении рентгеновскими лучами полиэтилена высокого давления количество образующихся низкомолекулярных углеводородов примерно в шесть раз больше, чем для полиэтилена низкого давления [33]. Считают, что расщепление связей углерод — углерод при третичных атомах С в облучаемом поли-пентене-1 предшествует образованию тпракс-виниленовых групп [61]. С точки зрения статистики расщепление двух из трех таких связей должно привести к разрыву макромолекулярной цепи. Однако было подсчитано, что эффективность процессов образования транс-виниленовых групп в линейном полиэтилене и в полипентене-1 примерно одинакова. Специфика поведения третичного атома углерода при разрыве молекулярной цепи не ясна. Стабилизация радикалов, образовавшихся при разрьГве углерод-углеродной связи, более вероятна в боковой, чем в основной цепи [20]. [c.171]

    На рис. 2.21 приведены УФ-спектры поглощения поливинилхлоридной пленки, облученной электронами высокой энергии при —73°С и подвергнутой нагреванию при различных температурах [140]. Полосы 252, 291 и 330 нм могут быть отнесены к поглощению ал-лильных, диенильиых и триенильных радикалов соответственно. Соответствующие полосы поглощения 258, 285 и 323 нм были идентифицированы в облученном полиэтилене [141]. Остальные полосы в области 330— 500 нм не связаны с поглощением более длинных по-лиеновых цепочек. [c.99]

    В результате сравнения стабильности нри облучении показано, что диметилсилоксановые полимеры несколько более устойчивы к поперечному сшиванию при облучении электронами с энергией 2 Мэе, чем полиэтилен при облучении электронами с энергией 0,8 Мэе [464]. В образце (СцНзСНзЗЮ). -, который получил 186 мрэф, образуются поперечные связи в той же стенени, что и в образце [(СНз)2310]ж, который получил 10 мрэф. Это значительное различие в чувствительности полимеров сделало возможным использование облучения для вулканизации эластомеров, в результате которой получают силиконовые каучуки с важными физическими свойствами [149, 150, 464], а также нрименение их в источниках излучения очень высокой энергии [148, 464]. [c.208]

    В электротехнике полиэтилен используют в виде полос при изготовлении кабеля, особенно для радарной техит ки. Теплостойкость полиэтилена может быть повышена в этом случае путем облучения электронами. В производстве полевого кабеля хорошие результаты дала смесь полиэтилена с сажей, наноси-, мая на провод. Дополнительно наносят защитный слой из полиамида. Возможно использование полиэтилена в производстве телефонного кабеля и кабеля для прокладки по дну моря. [c.200]

    Радиационная стойкость. Сополимер ТФХЭ — Э обладает высокой стойкостью к воздействию ионизирующих излучений и электронного пучка, относится к числу наиболее радиационностойких полимеров. Его радиационная стойкость сравнима с полиэтиленом высокой молекулярной массы и оценивается в 2,58-10 Кл/кг (10 Р) [14]. После облучения дозой 5 МДж/кг (500 Мрад) разрушающее напряжение при растяжении составляет 56%, а относительное удлинение при разрыве 10% от значений для необлученного образца сополимера. [c.151]

    Более интересные и тонкие эффекты возникают при облучении полимеров, имеющих такую структуру, при которой не происходит выделения легко ионизуюшихся молекул. Давно известно, что рентгеновские лучи могут создавать проводимость в таких диэлектриках, как янтарь [60]. Фармер [6] нашел, что объемное сопротивление полистирола, имеющее обычно величину порядка 10 ° ом см, может быть уменьшено в 10 раз (или в еше большее число раз) при дозе рентгеновских лучей 4000 фэр. Увеличенная проводимость наблюдается не только во время облучения, но сохраняется в течение многих дней, спадая приблизительно по экспоненциальному закону. Она обусловлена ионами и электронами, созданными во время облучения и сохраняющимися в теле в течение значительного времени после облучения. Фаулер и Фармер [61] нашли аналогичные эффекты в полиэтилене, а также обнаружили, что проводимость как облученного, так и необлученного полимера возрастает с температурой по закону [c.79]

    Наблюдения очень тонких пленок (200А) в электронном микроскопе показали, что кристаллические области нереосажденного полимера, как и следовало ожидать для алкилзамещенных полиамидов, имели примерно такую же плотность, как и аморфные области. Поэтому Литтл не была убеждена, что происходит сшивание, однако ей было ясно, что нроисходит деструкция и, возможно, разветвление. В противоположность полиэтилен-терефталату в найлоне 66 при облучении выделяется водород, причем скорость выделения газа уменьшается прн увеличении дозы. [c.191]

    Каргин и Корецкая [59] выполнили электронно-микроско-пическое и электронографическое исследования сферолитных образований и кристалликов в полиэтилене и сополимере капрона с найлоном до и после облучения образцов быстрыми электронами с энергией 75 кдв или 90 кэв (облучение проводилось непосредственно в электронном микроскопе или в электронографе). Ранее было известно, что под действием ионизирующих излучений полимеры претерпевают ряд структурных изменений (наряду с процессамй деструкции наблюдаются также процессы сшивания молекулярных цепей) и необратимо переходят в аморфное состояние. Так как, согласно распространенному мнению, сферолиты считалось возможным рассматривать как сростки взаимно ориентированных кристалликов, то в данной работе авторы ставили себе целью проследить за тем, что будет происходить со сферолитами при амор-физации полимера в результате облучения. [c.259]

    Интересная модификация метода с использованием предварительного облучения заключается в облучении полимера в присутствии реагентов, способных к образованию свободных радикалов, например перекиси бензоила, водного раствора перекиси водорода или азо-бис-изобутиронит-рила. Полимер немедленно после облучения погружают в виниловый мономер для инициирования привитой сополимеризации. Аналогично была осуществлена прививка различных виниловых мономеров на полиэтилен, полиэтилентерефталат, полиамид и поливинилфторид [144]. Хотя для проведения указанной реакции были использованы электроны высокой энергии, этот метод должен быть одинаково эффективен и при применении для облучения полимера 7-лучей или других излучений высокой энергии. [c.289]

    В радиационной химии этилена наибольший интерес представляет процесс полимеризации с образованием полиэтилена. В зависимости от условий реакции может быть получен полиэтилен с разными свойствами с различной температурой плавления и с различным молекулярным весом. Это зависит от температуры, давления, энергии излучения, мощности дозы, времени и характера облучения. Полимеризация этилена проводилась под действием а-лучей, быстрых электронов (полученных на линейных ускорителях), улучей. [c.280]

    Кемпбелл 16801 и другие 1681, 6821 сообщают, что в США выпускается новый материал ирратен (различные марки ирра-тена имеют обозначения 101, 110, 201, 202, 210, 212), представляющий собой облученный полиэтилен (полиэтилен, подвергнутый воздействию пучка электронов рентгеновской трубки) с различным содержанием поперечных связей, пропорционально степени облучения. Уже одна поперечная связь на 1000 атомов С, как отмечает автор, значительно изменяет свойства полиэтилена, причем свойства облученного полиэтилена не зависят от природы частиц, обладающих высокой энергией. Например, ирратен- [c.242]

    Для изоляторов, к которым принадлежат вещества с молекулярной решеткой, характер изменений кристаллов нри действии на них ядерных излучений может быть иным, чем в случае металлов. В этом случае возможно ожидать появления нарушений в решетке и при прохождении легких частиц или 7-излучения. Такие процессы изучены сравнительно мало. При изучении различного типа процессов, наблюдающихся при радиолизе полимеров, еще в 1950 г. на основании изучения электроно-грамм, полученных от топких плепок облученных веществ, нами было установлено, что при действии а- и р-излучений радона и его дочерних продуктов, а также быстрых электронов, кристаллические полимеры — полиэтилен, тефлон, полиамиды и сополимеры хлорвинила с хлорвинили-деном необратимо переходят в аморфное состояние. Настоящее исследование было предпринято с целью более подробного изучения этого явления. [c.215]

    Диффузное кольцо на электронограммах кристаллического полиэтилена но своему эффективному й (4,5 А) приблизительно соответствует первому диффузному кольцу на картине диффракции облученного полиэтилена й = 4,4). Положение остальных колец на электронограммах кристаллического полиэтилена, подвергшегося частичному переходу в аморфное состояние, не изменяется но сравнению с картиной от исходного необлученного материала, уменьшается лишь их иитенсивиость. Таким образом, количество кристаллов уменьшается, а количество аморфной части возрастает. Результатом радиационно-химической реакции при действии быстрых электронов на полиэтилен является переход этого материала в неплавкое и нерастворимое состояние. [c.219]


Смотреть страницы где упоминается термин Полиэтилен облучение электронами: [c.118]    [c.170]    [c.174]    [c.199]    [c.283]    [c.263]    [c.173]    [c.213]    [c.55]    [c.270]    [c.201]   
Химические реакции полимеров том 2 (1967) -- [ c.224 ]




ПОИСК





Смотрите так же термины и статьи:

Облучение электронами

Полиэтилен облучение

Электронное облучение

облучение



© 2025 chem21.info Реклама на сайте