Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Топочные газы скорость потока

    За рубежом для сушки осадков достаточно широко используют пневматические сушилки (трубы-сушилки). Сушка осуществляется в вертикальной трубе длиной до 20 м. Частицы материала движутся в потоке нагретого воздуха (или топочных газов), скорость которого превышает скорость витания частиц и составляет 10— 30 м/с. [c.300]

    В качестве твердого теплоносителя применяются круглые гранулы глинозема диаметром 8 мм, их теплоемкость 1680 кдж-м- град удельная поверхность 415 пористость 45%. Теплоемкость Hj 2S,9 кдж-кмоль -град- . Физические данные для углеводородов можно найти у Максвелла . Теплоноситель предварительно нагревается до 1093 °С посредством прямого контакта с топочными газами и протекает сверху вниз через реактор параллельно потоку бутана, который имеет на входе температуру 260 С и избыточное давление 1,37-10 н/ж (1,4 ат). Требуемая степень превращения 90%, максимальная температура не должна превышать 871 °С. Найти необходимую скорость циркуляции теплоносителя, давление газа на выходе и объем реактора. [c.277]


    Закончив подготовительные работы, подают пар давлением 0,2 МПа в змеевики печи против хода потоков и зажигают горелки. Температура топочных газов па перевалах повышается до 600—650 "С, примерно со скоростью 150°С/ч. При дости- [c.191]

    Выбор температуры ta дымовых газов на перевале. Под температурой дымовых газов на перевале понимается температура их при переходе из топочной камеры в конвекционную. Допустимая верхняя граница пв этой температуры зависит от допустимой теплонапряженности радиантных труб и первых рядов конвекционных труб, которая, как уже было отмечено выше, определяется в основном характером сырья, скоростью потока в змеевике, качеством металла труб. [c.484]

    Физические явления, подготавливающие и сопровождающие процессы воспламенения и горения, весьма сложны. Горелка и топочная камера реализуют непрерывные поточные процессы, в которых участвуют потоки топлива, окислителя и топочных газов. В большинстве случаев количество окислителя и соответственно продуктов горения значительно превышает количество горючего. Газовоздушный поток, проходя эти устройства, подчиняется законам аэродинамики. Вследствие неоднородности поля температур аэродинамические явления осложняются теплообменом, а вследствие наличия в этом иоле источников газообразования и тепловыделения — и соответствующими физико-химическими процессами. Таким образом, в топочном устройстве приходится иметь дело со сложными полями скоростей, концентраций и температур, с источниками и стоками, что крайне трудно поддается сколько-нибудь точному математическому описанию. Все указанные стороны процесса взаимосвязаны и воздействуют друг на друга. [c.7]

    Скорость потока топочных газов определяет при заданных размерах топки время пребывания горючей смеси в топочной камере, которое должно находиться в определенном отношении ко времени сгорания этой смеси и при попытке достичь полного сгорания удовлетворять условию [c.120]

    Скорость и температуры потока топочных газов. Связь между двумя важнейшими характеристиками процесса —скоростью потока топочных газов и температурой— легко устанавливается через выражение для баланса тепловой энергии. Если принять, что начальная температура горючей смеси [c.120]

    Скорость и температуры потока топочных газов [c.121]

    В условиях высокотемпературной газо-воа-душной среды топочного пространства скорости витания частиц тех же размеров становятся еще меньше, а если учесть, что реальные частицы угольной пыли, имеющие рваную, неопределенную поверхность, обладают, как уже указывалось, во много раз большей парусностью, чем частицы сферической формы, то становится ясным, что достаточно тонкая угольная пыль фактически следует вместе с га-зо-воздущным потоком в том же, что и он, направлении и с той же скоростью .  [c.145]


    Всякая топка состоит из системы горелок и топочной камеры н представляет собой прибор, через который с помощью приданной ему тяго-дутьевой системы движется с той или иной начальной и конечной скоростями непрерывный газо-воздушный поток. Следовательно, всякую топку надлежит рассматривать как некий аэродинамический прибор, производительность, а следовательно, и форсировка которого зависят от его пропускной [c.252]

    Корневая часть костра с беспорядочно наваленным твердым топливом является неплохим завихрителем (турбулизатором) движущегося кверху газовоздушного потока, вызывающим по краям этого потока энергичное смесеобразование топливного газа с воздухом, в котором невольно участвуют и сгоревшие уже топочные газы. Однако поднимающийся кверху поток вынужден преодолевать значительное сопротивление атмосферы и присоединять к себе увлекаемые нм соседние слои холодного воздуха, постепенно охлаждаясь, расширяясь и замедляя свое поступательное движение. Скорости этого потока, весьма различные по его сечению в нижних участках (у костра), замедляясь, постепенно выравниваются и вследствие этого теряют способ- [c.158]

    Вторая особенность — высокая парусность пылинок. Так, например, для сферической частицы диаметром 20 мкм в потоке топочных газов с температурой 1 500 °С скорость витания (т. е. скорость свободного падения относительно газа) составляет всего примерно 0,0055 м/с. Для частицы неправильной формы эта скорость почти вдвое меньше. Названное значение скорости относится к инертной частице, не реагирующей с газовой средой. Для горящей угольной частицы в потоке газа появляется еще один фактор, существенно снижающий ее относительную скорость. Это — реактивное воздействие потока продуктов горения от поверхности частицы. С лобовой стороны, обеспеченной более быстрым поступлением кислорода, горение идет быстрее, а следовательно, больше и реактивная сила. В опытах отмечалось снижение относительной скорости горящей частицы по сравнению с инертной до трехкратного. [c.26]

    ДЛИНОЙ до 20 м. Частицы материала движутся в потоке нагретого воздуха (или топочных газов), скорость которого превышает скорость витания частиц и составляет 10—30 м1сек. В подобных трубах-сушилках процесс сушки длится секунды и за такое короткое время из материала удается испарить только часть свободной влаги. [c.624]

    Пневматические сушилки. Для сушки во взвешенном состоянии зернистых (неслипающихся) и кристаллических материалов применяют также пневматические сушилки. Сушка осуществляется в вертикальной трубе длиной до 20 м. Частицы материала движутся в потоке нагретого воздуха (или топочных газов), скорость которого превышает скорость витания частиц и составляет 10—30 м/сек. В подобных трубах-сушилках процесс сушки длится секунды и за такое короткое время из материала удается испарить только часть свободной влаги. [c.661]

    В качестве одного из относительно эффективных направлений снижения скорости сульфиднованадиевой коррозии в энергокотлах предлагается создавать аэродинамические потоки топочных газов. В основу способа заложен принцип ликвидации восстановительной среды в пристенном топочном экране. Тогда достигается интенсификация выгорания НгЗ, Нг, СО и других газов, что приводит к снижению скорости коррозии в 2—3 раза, но полностью предотвратить коррозию газомазутных котлов не удается. [c.177]

    Нагревательная установка с псевдоожиженным слоем твердо1 о теплоносителя также состоит из теплообменных камер, но несколько другого устройства. Топочные газы направляются по газоходу под распределительную решетку верхней камеры с такой скоростью, чтобы привести в псевдоожиженное состояние холодный зернистый материал, который поступает сверху. Нагретый материал отводится в нижнюю камеру, где псевдоожижается потоком нагреваемого (технологического) газа, поднимающегося сквозь отверстия распределительной решетки. Здесь происходит интенсивное нагревание технологического газа, воспринимающего тепло от зернистого промежуточного теплоносителя, В остальном схема установки совпадает с изображенной на рис, У1П-8. [c.321]

    В наиболее тяжелых условиях работают печные трубы, наружная поверхность которых непосредственно омывается горячими топочными газами с температурой примерно 500° С и выше, а внутренняя — контактирует с горячей агрессивной нефтью и ее днстнллятамп, которые в процессе нагрева вы-.деляют активную серу. Кроме того, трубы работают при повышенных давлениях и больших скоростях потока агрессивных сред. [c.58]

    Форсировка и скорость потока топочных газов. Вводя в изложение таьое су- [c.120]

    Температура и скорость потока топочных газов являются важнейшими результирующими характеристиками работы топочного устройства. Топочнье газы являются рабочим энергоносителем, отдающим эту энергию либо непосредственно двигателю (силовые топки), либо теплообменным аппаратам (тепловые топки). Следовательно, весьма существенно, чтобы продукты сгорания полностью или по крайней мере в основной своей части находились (при рабочих температурах обслуживаемых устройств) в газообразном состоянии. Это накладывает добавочное условие на выбор как топлива, так и окислителя, горючая смесь которых должна характеризоваться не только достаточно высокой предельной производительностью достаточно низкими температурами кипения продуктов их реакции. [c.121]


    В среде топочных газов, еще более вязкой вследствие высокой температуры и содержания газов с повышенной вязкостью, поток в со-стО Янии удержать еще более крупные частицы. Обычно форсунки характеризуются углом разно са распыленной жидкости в неподвижном воздухе. При распыливан ии в воздушный поток, дв ижущийся со скоростью, угол разноса соответственно изменится, так как частицы будут сноситься этим потоком. Он уменьшится при установке форсунки по потоку и ув бличится при ее установке против потока. Траектория полета жидких пыЛ ИН ОК становится криволинейной, в то время кз к при рас-пыливании в неподвижном воздухе основная, первоначальная, часть траектории летящей капли (пока не сказался гравитационный эффект) имеет прямолинейный характер. Этот линейный характер можно сох ранить для расчета траектории, если принять систему координат, движущуюся вместе с потоком с одинаковой скоростью, причем удобно принять за ось х направление потока, а ось у будет при этом. направлена поперек потока (для простоты картина представляется симметричной). [Л. 17]. [c.134]

    Применение указанного выше приема увеличения топочного пространства без каких-либо добавочных мероприятий, направленных на интенсификацию смесеобразования в этом объеме, привело в свое время к утверждению что топочный объем должен быть тем больше чем больше летучих содержится в топливе Однако утверждение это сколько-нибудь обо снованно может быть отнесено только к опи санному выше пассивному приему смешения неоднородного газового потока. Значительно более эффективным при схемах с поперечным питанием оказывается прием принудительного, достаточно интенсивного перемешивания разнородных участков топочных газов, движущихся по топочному объему. Этого можно достигнуть либо принудительным сближением таких участков, создавая суженные горловины в топочном пространстве, либо так называемым острым дутьем, т. е. введением в поток струй вторичного воздуха при больших начальных скоростях его вдувания (50-4- 80 м/сек), что обеспечивает значительную местную турбулизацию потока. Такой прием может привести к значительному сокращению рабочей зоны пламенной части горения, ведущейся по диффузионному принципу, иначе говоря, к сокращению зоны окончательного вторичното смешения газифицированного тоилива с воздухом. При схеме поперечного питания острое дутье играет роль не столько источника вторичного воздуха, сколько аэродинамического турбулизатора, перемешивающего параллельные слои потока с недостатком (Д]<1) и избытком ( 1 > 1) воздуха. Примеры такой организации слоевых процессов приведены на фиг. 1 5-5,а и б. [c.155]

    Существенно хотя бы ориентировочное определение дальнобойности струй вторичного воздуха, втекающих в основной поток топочных газов. Для такой оценки может служить полуэмпирическая формула, полученная А. Н. Ляховским и С. Н. Сыркиным [Л. 31 и 32] из опытов по аэродинамике. сносимых струй при неизотермическом втекании. Если скорости и температуры основного потока и струй вторичного воздуха обозначить через Тпот и Т сстр эквивалснтный диаметр [c.156]

    Вследствие значительных пределов колебаний у поступающего в топку фрезторфа обоих определяющих факторов топочная решетка могла то заваливаться топливом, то обнажаться, что свидетельствовало о том, что в случае фрезторфа при столь упрощенном способе подачи топлива питание слоя не является достаточно удовлетворительно организованным и требует более тонких азродвнамических приемов. Ненадежным в этом случае оказывается и способ питания вторичного (факельного) очага горения, так как при сколько-нибудь значительных форсировках (скоростях газо-воздушного потока) топочными газами будут подхватываться и сравнительно крупные частицы топлива, которые не будут успевать выгорать за время краткосрочного (прямоточного) полета через топочную камеру. [c.159]

    Такой предел наступит в тот момент, когда на выходе из топочно-газоходной системы или в одном из ее внутренних узких сечений будет достигнута скорость газо-воздушного потока, равная местной скорости звука, т. е. когда критерий сжимаемости М достигнет в указанном сечении значения, равного единице  [c.253]

    Полезно отметить, что в топках турбокомпрессора воздушного реактивного двигателя не всегда четко можно отделить топочную камеру, где происходит процесс горения, от камеры смешения, в которой топочные газы разбавляются третичным воздухом. При нормальных условиях можно считать, что процесс в основном полностью заканчивается в самой топке, занимающей примерно половину объема всего топочного устройства. Соответственно этому пришлось бы удвоить тепловые характеристики, приведенные в табл. 23-2 для этих топок (Ытоп, топ). Пожалуй, еще более напряженно работают силовые топки прямоточного воздушного реактивного двигателя, в которых процесс идет при значительно меньшем избы-точном давлении , так как предварительная компрессия воздуха осущ ествляется в этом случае в диффузоре лишь за счет набегания сна ряда на неподвижный воздух. Несмотря на значительно меньшие весовые скорости воздушного потока (Уо о) по сравнению с топками турбокомпрессора воздушного реактивного двигателя, эти топки обеспечивают не меньшие тйтЛовые нагрузки, а в соответствующих случаях и значительно превышают их. [c.263]

    Ломаные очертания топочной камеры, понятно, не являются единственным доступным средством усиления смесеобразования в ее объеме. Значительно более эффекти вны>ми, в случае надобности, могут оказаться аэродинамические средства в виде подачи части вторичного воздуха скоростными струями с боков камеры. В гл. 7 уже отмечалось, что смесеобразовательные процессы значительно ускоряются центрами местного возмущения потока. Таким первичным органом возмущения служит прежде всего сама горелка, Однако зона возмущения постепенно затухает по мере удаления потока от источника этого возмущения, а вместе с тем — замедляется и процесс выгорания топлива, причем зона горения начинает сильно вытягиваться вперед. Размещение добавочных центров возмущения в самом топочном пространстве в виде системы небольших плохо обтекаемых тел нецелесообразно из-за тяжелых температурных условий их существования. Энергичное вдувание вторичного воздуха в виде острых струй с большими начальными скоростями, обеспечивающими им достаточную дальнобойность при данных мощности и толщине основного потока газов, может организовать энергичное возмущение потока в той части камеры, в которой процесс смесеобразования проявляет склонность к затуханию. Смесеобразовательный процесс энершчно идет только в том случае, если по сечению потока возникают слои с резко различными поступательными скоростями. Постепенно скорости эти выравниваются, даже если средняя общая скорость потока велика, и процесс [c.140]

    Воспламенение струи пылевоздушной смеси, вдуваемой в топочную камеру, имеет характер вынужденного воспламенения (иначе зажигания) подобно рассмотренному выше для гомогенной газовоздушной смеои. Начинаясь по периферийной поверхности струи, воспламенение постепенно развивается в глубь ее сечения. Первоначальным источником тепла для зажигания струи пылевоздушной смеси служат эжектируемые ею высокотемпературные топочные газы, окружающие вдуваемую струю. Подмешиваясь к внешним слоям струи, топочные газы доводят их до воспламенения. В свою очередь воспламенившиеся элементы потока иылевоздушной смеси служат источником тепла для дальнейшего развития воспламенения в глубь сечения струи. В итоге при зажигании пылевоздушной струи, подобно тому как это наблюдается в струе газовоздушной, возникает фронт воопламенения. Однако следует отметить весьма существенное различие в развитии этого процесса между газо- и пылевоздушными струями. В первом случае при наличии в смеси достаточного для ее сгорания количества кислорода горение (и тепловыделение) завершается в тонком фронте пламени, разделяющем исходную невоопламененную омесь и продукты горения. Во втором случае горение и тепловыделение, начинаясь по франту воопламенения, значительно растягиваются по времени и в пространстве. Вследствие этого существенно замедляется и развитие высоких температур в зоне воспламенения, а скорость распространения фронта воспламенения резко падает по сравнению с гомогенной газовой смесью. В особенности это относится к твердым топливам, бедным летучими. Сгорание летучих, сосредоточенное в зоне фронта воспламенения, сравнительно быстро повышает температуру воспламеняющейся смеси. При большом выходе летучих развивающаяся от их сгорания температура существенно выше уровня воспламенения [c.27]

    Примером влияния конструкции горело может служить показанная на рис. 11 схема зажигания пылевоздушной смеси в двух распространенных типах горелок круглой вихревой (турбулентной) и прямоточной. В горелке первого типа первичная смесь и вторичный воздух подаются через концентрические кольцевые сечения. Улиточный подвод воздуха к горелке, интенсивно закручивающий поток (или наличие рассекающего конуса), сообщает струе дополнительную составляющую скорости, перпендикулярную ее оси. Благодаря этому струя на выходе из горелки размыкается с образо1ванием в центральной ее части разреженной зоны, в которую подсасываются топочные газы, поджигающие первичную смесь по развитой внутренней поверхности струи (рис. 11,а). Внешнюю поверхность струи образует поток вторичного воздуха, постепенно подмешивающегося в первичной смеси. [c.35]

    Догорание пыли протекает в кинетическом режиме. Поэтому турбулизация газового потока полезна здесь лишь в той мере, в какой она способствует выравниванию газовых концентраций и устранению местных зон недостатка кислорода. Повышением концентрации кислорода при увеличении начального избытка воздуха можно в известной мере повысить скорость догорания. Однако возможность целесообразного использования этого пути очень ограничена, так как при этом ухудшаются условия зажигания лыли и растет потеря тепла с уходящими газами. Основным направлением решения этой проблемы является комплексная интенсификация топочного процесса в целом, начиная с фазы зажигания, с таким расчетом, чтобы догорание топлива заканчивалось при достаточно высоких температурах топочных газов, существенно превышающих температуру потухания. [c.41]


Смотреть страницы где упоминается термин Топочные газы скорость потока: [c.274]    [c.38]    [c.120]    [c.120]    [c.121]    [c.137]    [c.165]    [c.167]    [c.193]    [c.196]    [c.275]    [c.318]    [c.14]    [c.16]    [c.184]    [c.193]    [c.197]    [c.213]   
Топочные процессы (1951) -- [ c.120 ]




ПОИСК





Смотрите так же термины и статьи:

МПС топочный

для скоростей газов



© 2022 chem21.info Реклама на сайте