Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Догорание

    В верхней части регенератора иногда создаются условия для догорания окиси углерода в двуокись, сопровождающегося большим тепловыделением и резким повышением температуры вверху регенератора. Как известно, при горении углерода около двух третей общего тепла реакции выделяется при присоединении второго атома кислорода к углероду и только около одной трети — при окислении углерода до СО. [c.162]


    Выжиг кокса с поверхности катализатора протекает в основном в кипящем слое катализатора. Образующаяся при этом окись углерода дожигается оставшимся в дымовых газах кислородом в верхней зоне регенератора и в циклонах. Состав продуктов сгорания определяется условиями равновесия. Окисление СО в СО2 сопровождается значительным тепловыделением и резким повышением температуры в верхней зоне регенератора, что может привести к сокращению сроков службы располагающихся там внутренних устройств и циклонов. Для подавления процесса догорания окиси углерода под днище [c.33]

    В случае хорошо организованного рабочего процесса при работе двигателя на полной нагрузке в течение первой фазы 0i выделяется примерно 7з от общей теплоты сгорания топлива, вводимого в цилиндр за цикл коэффициент активного тепловыделения при этом составляет 0,3. К моменту окончания второй фазы 9ц указанный коэффициент достигает 0,7—0,8. Наблюдаемое постепенное замедление скорости тепловыделения в третьей фазе бщ связано с такими неблагоприятными факторами, как уменьшение концентрации кислорода, разбавление смеси топлива с воздухом продуктами сгорания, прогрессирующее увеличение объема камеры, снижение температуры и давления. Продолжительность фазы догорания 9ш может соответствовать 70— 80° ПКВ от в.м.т. При увеличении доли тепловыделения в фазе 0т сильно снижается эффективность использования выделяющейся теплоты, уменьшается топливная экономичность двигателя и повышается температура газов на выпуске. [c.158]

    Концентрацию кислорода в газах регенерации поддерживают невысокой с целью экономии энергии на подачу воздуха и создания менее благоприятных условий для процесса догорания окиси углерода вверху регенератора. Содержание кислорода в смеси выходящих из циклонов газов автоматически регистрируется и контролируется. Периодически проводится полный технический анализ продуктов сгорания. [c.160]

    В процессе эксплуатации регенератора температура дымовых газов может превысить нормальную вследствие догорания окиси углерода. При своевременном обнаружении этого явления необходимо перераспределить воздух по секциям, уменьшая подвод era к тем секциям, где имеется избыток кислорода в дымовых газах, выходящих из секции, и увеличивая его ввод в секции, где недостаточно кислорода. В случае резкого повышения температуры отходящих газов временно прекращают подачу воздуха в отдельные или во все секции. [c.153]


    Условия процесса окисления СО в СОд улучшаются с повышением температуры газов регенерации и увеличением концентрации в них кислорода. С ростом температуры производительность регенератора по количеству сжигаемого кокса увеличивается, однако температуру внутри регенератора поддерживают не выше 620°. Но и при такой температуре не исключена возможность массового догорания окиси углерода. Своевременное обнаружение этого нежелательного процесса весьма важно при эксплуатации установки. Для подавления процесса догорания в верхнюю зону регенератора [c.162]

    Чтобы не допустить догорания, необходимо тщательно контролировать и регулировать температуру процесса регенерации, поддерживать концентрацию кислорода в продуктах сгорания кокса не выше 1% объемн. и избегать нарушения нормальной циркуляции катализа opa [191]. [c.163]

    Догорание окиси углерода в циклонах, сопровождающееся значительным тепловыделением, приводит к быстрому их прогару. [c.167]

    При выборе основных параметров технологаческого режима работы регенератора надо иметь в виду, что температура процесса регенерации, количество воздуха, подаваемого на регенерацию катализатора, содержание кислорода в дымовых газах и остаточного кокса на регенерированном катализаторе — взаимозависимые параметры. С понижением температуры и содержания кислорода в продуктах сгорания уменьшается вероятность самопроизвольного сгорания СО в СО2, но при этом появляется опасность накопления остаточного кокса на катализаторе, тем самым снижается глубина выжига. При повышении температуры регенерации увеличиваются глубина выжига кокса и производительность регенератора по количеству сжигаемого кокса, но не исключается возможность массового догорания окиси углерода, что может резко поднять температуру в регенераторе. Вода или водяной пар, впрыскиваемые в верхнюю зону регенератора для снижения температуры процесса, могут вызвать значительную перегрузку циклонов, снизить эффективность их работы и пропускную способность регенератора. [c.34]

    Возникновению процесса догорания способствует усиление турбулентности потока газа при входе его в циклоны и внутри их. На установках флюид модели IV (см. стр. 2С4),- в регенераторах которых газы движутся с повышенной скоростью и в циклоны поступает газ с высокой концентрацией катализатора, в систему пылеулавливания (рис. 85) впрыскивается вода [191]. Впрыск воды, предохраняет циклоны от перегрева, но при этом увеличиваются потери катализатора и снижается его активпость. [c.168]

    Различия скоростей сгорания в этих трех фазах наиболее наглядно проявляются в характере изменения скорости тепловыделения (см. рис. 3.22). В фазе быстрого сгорания (01) значения с х/ ф сначала резко возрастают, а затем быстро уменьшаются. В конце фазы замедленного сгорания (0ц) обычно снова несколько возрастает что вызвано дополнительной турбулизацией заряда в начале движения поршня вниз. В фазе догорания (0п1) скорость тепловыделения непрерывно [c.156]

    Догорание окиси углерода в верхней части регенератора может привести к повреждению конвертора и порче катализатора. Для борьбы с догоранием, сопровождающимся значительным тепловыделением и резким повышением температуры (что ускоряет [c.184]

    В период пуска, когда избыток кислорода значителен, температуру в регенераторе не поднимают выше 565°, чтобы не допустить массового догорания окиси углерода, а следовательно, перегрева и порчи катализатора. [c.271]

    Воздух, необходимый для регенерации катализатора, подается в регенератор 6 воздуходувкой 19. Газы регенерации выпускаются в атмосферу через дымовую трубу 20. Для хранения свежего катализатора, а также равновесного (в периоды остановки конвертора на ремонт) служат бункеры 21. Конденсат водяного пара и очищенная вода для питания котлов-утилизаторов поступают в приемники 22. Для борьбы с догоранием окиси углерода предусмотрен ввод в отстойную зону регенератора водяного пара давлением [c.276]

    Форма камеры сгорания и расположение свечи также оказывают существенное влияние на скорость и полноту сгорания топливо-воздушной смесн. Чтобы усилить турбулизацию горючей смеси, камере сгорания придают форму, создающую узкие проходные сечения для перетекания смеси из цилиндра камеру в конце такта сжатия. Этим достигается ускоренное догорание смеси. Свеча должна располагаться так, чтобы вблизи ее не создавалась излишняя турбулизация и в то же время обеспечивалась хорошая очистка зоны свечи от остаточных газов потоком смеси, поступающей из впускной системы. [c.151]

    Для предотвращения догорания окиси углерода в двуокись предусмотрены ввод конденсата через восемь форсунок в зону сепарации и водяного пара под днище сборной камеры и в циклоны первой ступени. [c.225]

    Схема регенератора крекинг-установок приведена на рис. 14. Основными внутренними узлами регенератора являются корпус 1, циклонные устройства 7, вертикальные цилиндрические 2 и радиальные 3 перегородки, секционирующие зону выжига кокса, коллекторы подвода воздуха в зону регенерации катализатора 4, система ввода водяного пара под днище сборной камеры 8 и в циклоны первой ступени 7 для предотвращения догорания окиси углерода в двуокись. В отдельных случаях для съема избыточного тепла и упорядочения движения потока газовзвеси в зоне регенерации устанавливаются пароводяные змеевики. [c.41]


    При температуре выше 450°С 4 возможно догорание остаточ- [c.74]

    При нормальном рабочем процессе в двигателях с искровым зажиганием сгорание смеси может быть условно разделено на три фазы первая — начальная, в течение которой небольшой очаг горения, возникший между электродами свечи, постепенно превращается в развитый фронт турбулентного пламени вторая — основная фаза распространения пламени третья — фаза догорания смеси. Провести резкую границу между отдельными фазами сгорания не представляется возможным, так как изменение характера процесса происходит постепенно. [c.61]

    В верхней части регенератора расположены двух- или трехступенчатые циклоны, снабженные устройствами для вспрыска воды и подачи водяного пара в случае подъема температуры, вызванного догоранием оксида углерода. Последнего можно избежать, если предусмотрен автоматический контроль за концентрацией кислорода в продуктах сгорания. [c.56]

    Одним из важных параметров регенерации является соотношение концентраций оксидов углерода в продуктах сгорания. Процесс горения кокса должен сопровождаться тщательным автоматическим контролем, обеспечивающим отсутствие свободного кислорода над слоем катализатора, так как догорание оксида углерода в зоне отстоя наносит большой ущерб внутренним устройствам регенератора, в первую очередь циклонам. Потенциальное тепло сгорания оксида углерода до диоксида иногда используется в специальных котлах-утилизаторах с получением пара высокого давления. Однако эти котлы дороги и не всегда рентабельны. Другим мероприятием, способствующим обезвреживанию продуктов сгорания кокса, является применение специального катализатора для полного догорания СО до СО2 в самом регенераторе. [c.57]

    Должно быть проверено состояние стояков циклонных сепараторов на отсутствие щелей и прочность крепления опорных балок, а также состояние опорных решеток в верхней части реактора, регенератора и сводовых кирпичей. Ввиду того, что в верхней части регенератора временами, в результате догорания СО, температура значительно повышается, то происходит коробление решеток и даже срыв их в местах крепления к корпусу регенератора и циклонного сепаратора. [c.136]

    В процессе регенерации катализатора в регенераторе и шлемовой трубе регенератора происходит догорание СО и СО, за счет избыточного кислорода в дымовых газах. Прн этом выделяется значительное количество тепла и температура в регенераторе, особенно в верхней его части и котле-утилизаторе, резко повышается, что может привести к деформации внутренних облицовочных листов регенератора, шлемовой трубы и котла-утилизатора. Для устранения этого явления необходимо уменьшить количество воздуха, подаваемого в регенератор, и подать воду или водяной пар над кипящий слой катализатора в регенераторе и в котел-утилизатор.По восстановлении температуры расход воздуха в регенератор довести до нормального и, в зависимости от температуры, уменьшить или полностью прекратить подачу водяного пара или воды в регенератор и котел-утилизатор. [c.181]

    Из приведенных данных видно, что в рекуператоре происходит догорание несгоревшей части газа и разбавление воздухом за счет подсосов через неплотности кладки рекуператора. [c.118]

    Псевдоравновесный подход используется при анализе кинетики гетерогенных процессов (растворения солей, экстракции, догорания углерода или его выпадения из газовой фазы), а также процессов электродного окисления, медленных процессов замещения в инертных комплексных соединениях н т. д. [2—6]. Для систем с единственной медленной реакцией характерна возможность однозначно связать концентрацию (п температуры — в адиабатическом случае), а следовательно, и скорость протекания медленной реакции с ее координатой. [c.47]

    Оценки скоростей догорания в каждый момент времени возможны, однако они сильно зависят от предположений о дисперсности углерода и выбранного уравнения для скорости реакций углерода с газами литературные данные здесь сильно отличаются у разных авторов. Тем не менее можно показать, что за счет снижения температуры при догорании скорость довольно резко падает и установления равновесия при горении смесей с малыми а за миллисекундные промежутки времени не происходит. [c.49]

    КС. личество тепла (25000 — 31500 кДж/моль, то есть 6000—7500 ккал/ К1 кокса). Углерод кокса сгорает до СО и СО , причем их соотношение зависит от химического состава катализатора и реакционной сг особности кокса. При значительной концентрации СО возможно вс зникновение ее неконтролируемого догорания над слоем катализатора, что приводит к прогару оборудования. Введение в состав Катализатора небольших добавок промоторов окисления устраняет образование СО. При этом возрастает экзотермичность горения кокса. Тепло, выделяющееся при регенерации, частично выводится газами регенерации, а большая часть расходуется на разогрев гранул Кс тализатора. [c.130]

    Подогретый воздух для сжигания кокса подается под распределительную решетку регенератора. 1тобы не происходило догорания окиси углерода, предусмотрены разбрызгиватели очищенной (умягченной) воды. Газы регенерации перед выводом их в дымовую трубу освобождаются в циклопах от катализаторной пыли. [c.134]

    Добавляемый в систему свежий катализатор вводится либо в отстойную зону регенератора, либо в низ плотного слоя, либо в стояк отработанного катализатора ниже задвижки. Подача катализатора первым способом приводит к догоранию окиси углерода -(катализа гор подается в регенератор потоксш свежего воздуха) [c.160]

    Резкий подъем температуры газов вследствие самопроизвольного сгорания СО в СО2 приводит не только к порчз катализатора, но и сокращению срока службы внутренних элементов регенератора, циклонов и металлических дымоходов — трубопроводов. В практике эксплуатации крекинг-установок были случаи внеплановой остановки их на ремонт вследствие недостаточно действенной борьбы с догоранием газов в верхней части регенератора и 1Ц1кло-нах. [c.162]

    На многих установках часть тепла газов рэгенерации исноле-зуется для производства водяного пара в котлах-утилизаторах. Помимо первичных паровых котлов-утилизаторов, нэ некоторых установках применяют и вторичные котлы-утилизаторы, в которых водяной пар производится за счет тепла, выделяющегося при сгорании больших количеств СО и следов углеводородов (вносимых в регеператор потоком катализатора и не успевших в последнем сгореть), и за счет сжигания в топке такого котла топлива, подводимого извне. Топливо необходимо сжигать для того, чтобы обеспечить догорание окиси углерода [140,141, 246]. Иногда процесс окисления СО в Og осуществляют над катализатором окисления, носящим фирменное название оксикат [142 . [c.163]

    Дпя борьбы с догоранием окиси углерода в верхней части регенератора разбрызгивается вода (конденсат втздяногб пара). С ростом содержания катализатора в потоке газов увеличивается и расход воды вследствие необходимости охлаждения не только-газов, но и повышенного количества уносимого ими катализатора. Как показала практика эксплуатации регенераторов установок модели IV, борьба с догоранием окиси углерода путем разбрызгивания большого количества воды приводит иногда к резкому падению температуры катализатора в плотном слое и нарушению-нормального режима процесса [105]. [c.265]

    В процессе горения топливо-воздущной смеси в двигателях с воспламенением от искры могут быть выделены три фазы начальная, в течение которой небольшой очаг горения, возникающий в зоне высоких температур (примерно 10 ООО К) между электродами свечи, постепенно превращается в развитый фронт турбулентного пламени основная фаза — быстрое распространение турбулентного пламени по основной части камеры сгорания при практически неизменном ее объеме, так как порщень находится вблизи верхней мертвой точки (в.м.т.) завершающая фаза— догорание смеси за фронтом пламени и в пристеночных слоях [163]. [c.149]

    В процессе сгорания топлива, начинающемся в точке 2, можно выделить три фазы. Фаза быстрого сгорания (01) на участке 2—3, в течение которой давление и температура быстро повышаются в результате сгорания значительной части топлива, испарившегося в период 0, и продолжающего поступать через форсунку. Фаза замедленного сгорания (0п), когда еще продолжается повышение температуры, но давление несколько снижается вследствие быстрого увеличения объема камеры сгорания из-за движения поршня вниз. В связи с этим точка 4 максимума температуры на диаграмме располагается правее точки 3 максимума давления. Скорость сгорания в фазе 0и определяется главным образом интенсивностью смешения паров топлива с воздухом. Фаза догорания (01п) начинается за точкой 4 и может составлять значительную часть такта расширения. Скорость сгорания топлива в этой фазе лимитируется процессами диффузии и турбулентным смешением с воздухом остатков несгоревшего топлива и продуктов его неполного сгорания, образовавшихся в зонах местного пе-реобогащения смеси. [c.156]

    За границу раздела между основной и завершающей фазами сгорания условно принят момент достижения максимума давления на индикаторной диаграмме (точка в на рис. 17). Сгорание в это время еще не заканчивается и сред1 1яя температура газов в цилиндре продолжает некоторое время возрастать [22. Фронт пламени уже приближается к стенкам камеры сгорания и скорость его рас-. пространения уменьшается за счет меньшей интенсивности турбулентности и снижения температуры в пограничных со стенкой слоях. Уменьшение скорости сгорания ведет к снижению скорости тепловыделения, поэтому повышение давления в результате сгорания в фазе догорания уже не может компенсировать его падения велед-ствие начавшегося рабочего хода поршня, Процессы догорания смеси в пограничных со стенкой слоях продолжаются в течение довольно длительного времени. При этом скорость процесса догорания, так же как и скорость сгорания в начальной фазе, в большей мере зависит от физико-химических свойств рабочей смеси, чем от интенсивности ее турбулентного движения [22]. [c.63]

    Длина топочной камеры лимитируется д.линой факела. В свою очередь длина факела в основном зависит от степени дисперсности топлива и количества подаваемого на сгорание воздуха. При некачественном распыливании топлива догорание его может происходить в камере конвекции, при этом не только увеличивается недожог топлива, но и возникает угроза прогара конвекционных труб. Практикой эксплуатации трубчатых печей установлено, что для полного сгорания жидкого топлива длина тоночной камеры должна быть не менее 4—5 м. [c.106]

    Дымовые газы на выходе из регенератора при нормальных условиях регенерации содерлсатот 2,0 до 3,5% СО и до 7—8 кислорода. При определенных условиях возможно догорание окиси углерода в двуокись углерода. В этом случае температура дымовых газов повышается ло 1000" С и более ввиду того, что температура окисления СО в СО2 достигает 1260 С. [c.28]

    Наличие в нродуктах горения окиси углерода указывает на неполноту горения. Догорание газов в рекуператоре может привести к перегреванию и оплавлению насадки рекуператоров, а также к перегреванию боровов. По технологическим требованиям при прокаливании антрацита он должен иметь максимальную температуру, что достигается путем удлинения пламени и увеличения разрежения. В последнем случае печь работает менее экономично, так как отходящие продукты горения Ихмеют очень высокую температуру. [c.118]

    Печь двухкамерная с перевальной стенкой. В первой камере происходит сгорание твердых отходов, во второй догорание. Печь футерована щамотным кирпичом класса Б и заключена в металлический каркас. Сжигание отходов производится в слое на неподвижной колосниковой решетке. Загрузку отходов в печь производят через бункер, расположенный над печью. Бункер имеет заслонку типа мигалки, которая автоматически закрывает его после загрузки. Для сжигания влажных материалов в печи установлена инжекцион-ная горелка. Агрегатная нагрузка печи до 100 кг/ч. [c.245]

    Измерения профилей концентрации исходных газов, промежуточных веществ и продуктов реакции горения показывают, что иоку горения метана и вообще углеводородов можно разделить на три части 1) зо(5у предварительного подогрева газов, в которой химическая реакция идет очень медленно, 2) зону быстрой реакции (светящаяся зона пламени), в которой И1 ходный углеводород превращается в Н , СО, Н О и СО2, и 3) зону догорания, в которой СО сгорает в СОа и Н2 в Н2О. Это разделение обусловлено рапличием относительных скоростей горения исходного горючего (и первичных п])одуктов его окисления) и горения СО и Н . В] зоне догорания (в бедных смесях) очень быстро [c.220]

    Одно из наиболее распространенных пламен, получающихся при горении предварительно приготовленных смесей,— пламя бунзеновской горелки. В этой горелке смесь, образующаяся в результате смешения горючего газа с воздухом, горит во внутреннем конусе пламени Так как, однако, содержание кислорода в первоначальной смеси никогда (в условиях горелки Бунзена) не достигает значения, достаточного для полного сгорания, то продуктом реакции но внутреннем конусе бунзеновского пламени является газ, способный к дальнейшему окислению, которое осуществляется во внешнем конусе, Последний представляет собой обычное диффузиоюзое пламя, в котором за счет диффундирующего из окружающего пространства кислорода воздуха происходит догорание поступающего из внутреннего конуса газа. (О теории горелки Бунзена см. монографию Моста [55, гл. III..31 и [523].) [c.234]


Смотреть страницы где упоминается термин Догорание: [c.122]    [c.184]    [c.277]    [c.151]    [c.62]    [c.88]    [c.112]    [c.63]    [c.300]    [c.48]   
Смотреть главы в:

Химические основы работы двигателя Сборник 1 -> Догорание

Спектроскопия и теория горения -> Догорание


Химические основы работы двигателя Сборник 1 (1948) -- [ c.38 ]




ПОИСК







© 2024 chem21.info Реклама на сайте