Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Трубы-сушилки

Рис. 4.2. Схема пневматической трубы-сушилки [10] Рис. 4.2. <a href="/info/329213">Схема пневматической</a> трубы-сушилки [10]

    Положительное влияние предварительной термической подготовки на качество кокса тем больше, чем меньше спекаемость шихты и больше выход летучих из нее. Каждый тип угля и шихты характеризуется определенной температурой предварительного нагрева, при которой получают максимальный эффект. Так, наилучшие результаты для шихт, составленных из кузнецких углей, были получены при нагреве их перед коксованием до 130—140°С, донеикие можно нагревать выше, до 180—200ОС. На технологические свойства угольной загрузки оказывают влияние также условия ее термической подготовки скорость нагрева, содержание кислорода в газовом теплоносителе, вид теплоносителя (газообразный, твердый), вид контакта (непосредственный или через греющую стенку и др. В настоящее время осваивается головная промышленная установка на Западно-Сибирском металлургическом комбинате. Нагревают угольную шихту газовым теплоносителем в трубе-сушилке. Производительность коксовой батареи может быть повышена до 40%, расход тепла на коксование снижается на 10-12%, в состав шихты мохгг быть включено 20-25% слабоспекающихся углей. [c.209]

    Пневмотранспортные сушильные аппараты рекомендуются для сушки зернистых материалов с размером частиц от 1 до 10 мм. Схема такой сушилки со вспомогательным оборудованием приведена на рис. 10.4. Влажный материал питателем 1 подается в трубу 2. Воздух через калорифер 6 (или топочные газы) нагнетается вентилятором 5 в нижнюю часть трубы и со скоростью, превышающей скорость витания крупных частиц, подхватывает материал и транспортирует его. В процессе транспортировки происходит интенсивная сушка материала. Далее газы и высушенный материал поступают в циклон-пылеотделитель 3, где продукт улавливается, а очищенные в рукавном фильтре 4 газы выбрасываются в атмосферу. Диаметр трубы сушилки обычно не превышает 1,0 м, длина — 25 м, а максимальная скорость газа в трубе не выше 40 м/с. Габариты трубы сушилки определяются по вре- [c.300]

    Принимаем внутренний диаметр трубы-сушилки О = 260 мм. Для определения гидравлического сопротивления примем схему пневмотранспортной сушильной установки, как показано на рис. 10.4. [c.306]

    Критерий Рейнольдса для трубы-сушилки [c.306]

    I — питатель 2 — труба-сушилка 3 — циклон-пылеотделитель 4 — рукавный фильтр 5 вен тилятор 6 — калорифер [c.301]


    Длина трубы сушилки без учета участка с нестационарным режимом движения может быть найдена из уравнения [c.302]

    Внутренний диаметр трубы-сушилки определяется из уравнения [c.302]

    Диаметр трубы сушилки, м  [c.194]

    Диаметр трубы-сушилки по (10.23) будет [c.306]

    На рис. 4.3 представлена спиральная сушилка, разработанная в НИИ полимеров и Московском институте химического машиностроения (МИХМ). Сушильный тракт выполнен в виде плоской бифилярной спирали, расположенной в вертикальной плоскости. Сушильный спиральный канал (1) прямоугольного сечения образован спиральными лентами (2 и 3), стенкой (5) и крышкой (6). Спиральные ленты навиты концентрически и образуют в центре плавный 8-образный переход (4), а на периферии корпуса — входной и выходной патрубки. Влажный материал (взвешенный материал, взвешенный в газе) транспортируется от входного патрубка к выходному и высушивается, проходя путь от периферии к центру, а затем от центра к периферии. Спиральные одноступенчатые пневмосушилки с успехом заменяют многоступенчатые трубы/сушилки, при этом они значительно меньше по габаритам и менее металлоемки. [c.197]

    Примем сопротивление собственно трубы-сушилки с двумя коленами 110 Па. [c.307]

    Сушку полимера производят горячим воздухом в аппаратах типа труба-сушилка , в камерных сушильных агрегатах, в сушилках с кипящим слоем, а также во вращающихся барабанных сушилках. После сушки до содержания влаги в полимере не выше 0,3% его просеивают через мельничные сита 11 (чаще типа ХРШ), подают в специальные хранилища, а затем упаковывают в мешки. [c.26]

    Принципы брикетирования торфа те же, что и брикетирования бурого угля. Первоначально торф проходит стадию грохочения и измельчения, затем сушится в трубах-сушилках при температуре [c.164]

    Технико-экономические показатели торфобрикетного производства при пневмогазовом способе сушки торфа в трубах-сушилках приведены в табл. 86. [c.164]

    Пневматические сушилки. Для сушки быстро сохнущих мелкозернистых и кристаллических материалов находят применение пневматические сушилки или трубы-сушилки, в которых сушка материала о сущест-вляется во взвешенном состоянии. Простейшая пневматическая сушилка состоит из вертикально установленной трубы постоянного сечения длиной 18—20 м, по которой смесь горячих газов или воздуха и взвешенного в их потоке материала проходит при восходящем или нисходящем давлении газов. Сушка в пневматических сушилках обычно происходит при параллельном токе газов и материала. [c.699]

    Пример 1. Рассчитать пневматическую трубу-сушилку для высушивания полиэтилена. [c.190]

    Общая высота трубы-сушилки, м  [c.196]

    Для увеличения выработки дрожжей применяется способ двухступенчатого высушивания вначале дрожжи высушиваются на паровых вальцовых сушилках до содержания СВ 65—60%, а затем досушиваются иа пневматической сушилке типа труба-сушилка. При высушивании дрожжевого концентрата с дробинкой на вальцовых сушилках производительность их снижается. [c.254]

    На рис. 3.8 показана схема комбинированной сушилки пневмотруба — кипящий слой , предназначенной для сутки поливинилхлорида. В трубе-сушилке влажность снижается от 24 % до критической (равной 2%), а досушка до 0,1 % производится в двухсекционной противоточной сушилке КС с решетками реверсивного типа (рис. 3.7,а). На рис. 3.9 приведена схема [c.135]

    В химической промышленности наиболее широко используют трубы-сушилки. Диаметр этих сушилок иногда достигает 1 м, длина 25 м. Скорость теплоносителя в этих аппаратах весьма велика (10—40 м/с), поэтому время сушки, как правило, составляет несколько секунд и материал не перегревается, не спекается и не прилипает к стенкам сушилки. На рис. 2.68 приведена схема установки для сушки минеральных солей в режиме пневмотранспорта. Материал из бункера 2 двухшнековым питателем 1 подается в трубу 3, в которую из калорифера 8 поступает горячий воздух. Материал подхватывается теплоносителем и транспортируется в циклон 4. В трубе 3 происходит интенсивная сушка материала. Из циклона высушенный материал выгружается через затвор 7, а сушильный агент, пройдя систему 5 тонкой пылеочистки, выбрасывается в атмосферу вентилятором 6. [c.138]

    В таких сушилках процесс особенно интенсивен на начальном, или нестационарном, участке трубы, где относительная скорость газа и твердых частиц еще велика в дальнейшем по мере уменьшения этой скорости эффект тепло- и массообмена резко снижается. Хотя длина нестационарного участка в трубах-сушилках постоянного сечения невелика (1,5—2,0 м), на нем удаляется основная (до 55 %) часть влаги. Для интенсификации сушки создают нестационарные условия движения газовой взвеси по длине пневмотрубы, для чего ее снабжают расширителями, внутренними винтовыми вставками и пр. Так, труба 3 (см. рис. 2.76) имеет посередине расширитель, за которым происходит резкое увеличение относительной скорости материала и теплоносителя. [c.138]

    Трубы-сушилки особенно эффективны при рециркуляции твердой фазы или при многоступенчатой сушке в последнем случае при правильном выборе параметров режима сушки на каждой ступени можно получать продукт с более низкой остаточной влажностью. [c.138]


    Преимущественно для мелких твердых частиц, необходимое время взаимодействия которых с потоком жидкости или газа мало, процесс может быть организован в режиме пневмотранспорта. Примером такого рода может служить труба-сушилка [239, 240 J. Мелкие частицы подхватываются потоком горячего воздуха и с большой скоростью (20—30 м) проносятся через длинный аппарат, успевая за это время высохнуть (рис. V.3). С целью большей компактности компановки, а также интенсификации процесса аппарат может иметь изогнутую форму — вплоть до применения циклонных аппаратов, например, в процессах обжига [239, 241 ] и др. [c.205]

    В такой постановке задачи были получены, например, соотношения для определения температуры газов и материала по высоте трубы-сушилки при постоянном коэффициенте теплообмена [82], решены уравнения теплообмена при переменном коэффициенте теплообмена для двухкомпонентного потока при наличии внутреннего источника тепла [83], получены соотношения для расчета теплообмена трехкомпонентного потока при наличии внутренних источников тепла [84] и при их отсутствии [85]. [c.55]

    При принятой схеме расположения сушилки топливо на своем пути не соприкасается с воздухом. Это дало возможность проводить глубокую подсушку топлива в слое, не опасаясь его загорания. Сушильный агент подается к каждому отсеку раздельно и проходит слой топлива в разных направлениях. Раздельная подача газов с разных сторон обеспечивает более равномерную подсушку и нагрев топлива по объему. Забираемый специальным дымососом из газохода за котлом газ подается в сушилку под напором около 40—60 мм вод. ст. с температурой 280—320 С. Отработанный сушильный агент вместе с парами воды отводится в атмосферу через вытяжную трубу сушилки при температуре 70—90° С. [c.26]

    П. Для оценки эффективности работы типовой пневматич. сушилки (трубы-сушилки) применительно к сушке конкретного продукта наряду с обычным анализом на основе материального и теплового балансов установки (рис. 3) проведен ее [c.408]

    При высушивании высоковлажных термочувствительных материалов до низкой конечной влажности процесс обычно осуществляют в две ступени удаление поверхностной влаги проводят в сушилках с активными гидродинамическими режимами — КС при высоких числах псевдоожижения, трубах-сушилках, циклонных, во встречных струях и др. в качестве второй ступени для удаления внутренней влаги используют сушилки КС с регулируемым, значительным временем пребывания материала — с перекрестным направлением теплоносителя и материала, причем температуру возможно снижать по длине аппарата, не допуская перегрева материала, а также противоточные аппараты полунепрерывного действия, В тех случаях, когда не удается передать необходимое количество теплоты с псевдоожижающим агентом, вводят в слой теплообменные поверхности, что в ряде случаев значительно экономичнее, поскольку существенно снижаются потери теплоты с отходящим теплоносителем. [c.147]

    За рубежом широко применяют пневматические сушилки (трубы-сушилки) фирмы Раймонд (США) (рис. 7.33). Обезвоженный осадок предварительно смешивают с термически высушенным и измельчают в сушильной мельнице. Осадок сушат в вертикальной трубе длиной до 20 м, по которой происходит движение снизу вверх топочных газов и взвешенных в их потоке частиц осадка. Высушенный осадок с влажностью до 10 % отделяют от отходящих газов в циклоне и с иомощью раздаточного узла либо расфасовывают, либо подают в печь, где его сжигают. Туда же отсасывающим вентилятором подают запыленные отходящие газы. Часть обезвоженного осадка шнековым питателем подают в сушильную мельницу. [c.282]

    Конвективные сушилки с пневмотранспортом материала. В пневматических сушилках (рис. 21-24) материалы сушат в процессе их транспортирования газообразным теплоносителем. Сушилки этого типа используют для сушки дисперсных материалов. Чаще всего сушилка представляет собой вертикально расположенную трубу, где в режиме, близком к режиму идеального вытеснения, газовзвесь перемещается обычно снизу вверх. Время пребывания материала в зоне сушки составляет несколько секунд. Скорость газа в трубе-сушилке выбирают в несколько раз выше скорости витания частиц наиболее крупных фракций высушиваемого материала. Длина трубы в зоне сушки достигает 20 м, а скорость потока нагретого воздуха (или топочных газов) составляет 10-30 м/с. [c.268]

    Примем Шр = 1,5шос = 1,5-5,14 = 7,71 м/с, тогда длина трубы-сушилки без разгонного участка в соответствии с (10.19) [c.306]

    Сушку В режиме пневмотранспорта реализуют главным образом в трубах-сушилках (пневмотрубах), а также в вихревых и циклонных сушилках. [c.138]

    Перспективными направлениями в области флотационных методов обогащения являются перечистка флотоконцентратов на отдельных машинах, а также "масляная флотация" (добавка продуктов нефтепереработки в жидкую среду при флотации). На отечественных углеобогатительных фабриках широкое применение получили флотационные машины механического типа ФМУ-6,3 и МФУ2-6.3, новые машины МФУ2-8 и 10. Производительность этих машин по твердому углю 40-80 т/ч, по пульпе 220—800 мУч. Технологический процесс углеобогащения во многом определяет важнейший показатель качества угольной шихты — влажность. Причем равное значение имеют как абсолютные значения влажности, так и ее равномерность во времени. От влажности углей и угольной шихты зависят смерзаемость их при транспортировании, плотность насьшной массы угольной шихты в камере коксования, ее равномерность по длине и высоте камеры коксования и, значит, В конечном счете качество кокса. Поэтому технологический процесс обогащения завершается сушкой продуктов обогащения иногда всех, включая промежуточный продукт, в некоторых случаях сушке подвергаются только флотоконцентрат, шламы, мелкий концентрат. Сушка проводится в сушильных барабанах, аппаратах кипящего слоя, трубах-сушилках. Преимуществом барабанных сушилок является возможность сушки угольных концентратов разной крупности и их смеси гибкость регулировки процесса простота и надежность в эксплуатации относительно невысокий расход электроэнергии. К недостаткам барабанных сушилок можно отнести низкий коэффициент использования рабочего объема (громоздкость установки) залипание насадки, образование большого количества комков. [c.37]

    Производительными агрегатами являются установк кипящего слоя и трубы-сушилки. Глубина сушки материала может быть доведена до любого уровня. Следует иметь в виду возможное снижение спекаемости например, флотоконцентрата [c.37]

    Термическая подготовка углей является одним из наиболее эффектив-Ш.1Х средств интенсификации технологии коксового производства. Термоподготовку (т.е. нагрев до температуры 200 - 250 С) ведут в реакторах с ки-пяпщм слоем, в барабанных теплообменниках с твердым теплоносителем, в трубах-сушилках, После нагрева шихта подается в камеру коксования либо углезагрузочной машиной, либо по трубопроводу с помощью инертного газа или перегретого пара. [c.58]

    ДЛИНОЙ до 20 м. Частицы материала движутся в потоке нагретого воздуха (или топочных газов), скорость которого превышает скорость витания частиц и составляет 10—30 м1сек. В подобных трубах-сушилках процесс сушки длится секунды и за такое короткое время из материала удается испарить только часть свободной влаги. [c.624]

    Паровая трубчатая сушилка (рис. 479) состоит из наклонного вращающегося барабана 1 с трубами диаметром 00 мм. Высушиваемый материал равномерпо распределяется по трубам при помощи специального питателя и передвигается по ним к выходному отверстию. Пар вводится через переднюю цапфу 2 и, проходя в отверстия центральной трубы 3, поступает в межтрубное пространство барабана. Конденсат отводится по и-образным трубкам 4, соединенным со второй цапфой 5, Для повышения интенсивности испарения влаги центральную трубу сушилки снабжают внутренними ВИНТОВ , МП или лопзстными вставками. [c.697]

    Принципиальная техиол. схема Г.у. представлена на рисунке. Начальные операции-подготовка угля. Для повышения уд, пов-сти уголь измельчают до частиц размером менее 0,01 мм, часто совмещая этот процесс с сушкой. Лучшие результаты достигаются при вибропомоле и измельчении в дезинтеграторе. Уд, пов-сть при этом возрастает в 20-30 раз, объем переходных пор-в 5-10 раз. Происходит механохим. активация пов-сти, в результате чего повышается реакц. способность угля (особенно при измельчении в смеси с растворителем-пастообразователем и катализатором). Важное место занимает сушка. Влага заполняет поры, препятствуя проникновению к углю реагентов, выделяется в ходе процесса в реакц. зоне, снижая парциальное давление Н2, а также увеличивает кол-во сточных вод Угли сушат до остаточного содержания влаги < 1,5%, используя трубчатые паровые сушилки, вихревые камеры, трубы-сушилки, в к-рых теплоносителем служат горячие топочные газы с миним. содержанием О2 (0,1-0,2%), чтобы уголь не подвергался окислению. Во избежание снижения реакц. способности уголь не нагревают выше 150-200 °С. [c.555]

    Исходная неизмельченная шихта из бункера I питателем 2 загружается в камеру сушки 3, где газом-теплоносителем, подаваемым в нижнюю часть камеры, подсушивается и нагревается. Затем уголь поступает в дробилку 4, измельчается и потоком разбавленного рециркулятом теплоносителя по вертикальной шахте выносится в сепаратор 5. Здесь тяжелые и крупные зерна отделяются от основной массы мелкой шихгы, возвращаются в цикл измельчения-нагрева, а готовая шихта уходит в циклон 6. Отделившись в нем от газового потока она передается в бункер готовой шихты 7 или в трубу-сушилку 8. Далее газоугольная смесь поступает в цик юн 9 и разделяется уголь направляется в бункер готового продукта 7, а теплоноситель - в вихревой газопромыватель 13. Здесь часть отработанного теплоносителя сбрасывается в атмосферу, а часть подается на рециркуляцию в топку и дробилку. [c.277]

    Для установления совместного влияния способов подготовки и нагрева на качество кокса выполнены полузаводские испытания нескольких угольных шихт, которые подготавливались четырьмя методами обычным (ДШ), по этой же схеме с последующим нагревом в трубе-сушилке (ДШТ), избирательным измельчением в ВДК и этим же способом с одновременным нагревом (ВДКТ). [c.279]

    Комбинированные аппараты (табл. 3.2). К этой группе относятся сушилки, различающиеся по гидродинамическому режиму и по способу подвода теплоты. Поскольку удаление влаги, связанной физико-механически, при достаточном количестве подведенной теплоты происходит в течение секунд, а удаление физико-химически связанной влаги требует значительной продолжительности, то в некоторых случаях целесообразно сушку таких материалов проводить в две стадии первую удалять в аппаратах с активными гидродинамическими режимами — в трубах-сушилках, циклонных аппаратах и сушилках КС, работающих при высоких нагрузках по газу (при порозности слоя 0,7—0,8), вторую — в аппаратах с регулируемым временем пребывания, т. е. в яппапатах КС при невысоких нагрузках по газу (порозность слоя 0,5—0,55). [c.135]


Смотреть страницы где упоминается термин Трубы-сушилки: [c.163]    [c.206]    [c.267]    [c.352]    [c.315]    [c.268]    [c.268]   
Расчеты аппаратов кипящего слоя (1986) -- [ c.135 ]

Сушка во взвешенном состоянии _1979 (1979) -- [ c.14 , c.44 , c.120 , c.125 ]

Регенерация адсорбентов (1983) -- [ c.126 ]




ПОИСК







© 2025 chem21.info Реклама на сайте