Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Бактерии метаболизм

    При аэробном или анаэробном метаболизме организмы получают энергию в процессе окисления подложки — сахара (глюкозы) или какого-либо другого материала (битума). Это окисление с выделением энергии происходит путем перехода протонов или электронов через ряд стадий, регулируемых ферментами, до появления конечного акцептора электронов. В аэробных процессах конечным акцептором электрона или иона водорода является кислород. В анаэробных процессах таким акцептором является окисленный материал типа нитрата или сульфата. Опыт показал, что аэробный метаболизм эффективнее анаэробного, так как для роста в аэробных процессах требуется меньше материала подложки, чем в анаэробных при одинаковом количественном росте бактерий. Причиной такого явления, известного как эффект Пастера, является большее выделение энергии в процессе аэробного метаболизма. [c.186]


    Разнообразие родов и видов бактерий обусловливает разнообразие путей метаболизма утилизируемых веществ. Определение какого-либо соединения в качестве неразлагаемого подразумевает прежде всего недостаток информации о микроорганизмах, способных использовать это соединение. Для повышения эффективности биодеградации целесообразно использовать смещанные культуры микроорганизмов. В то же время один и тот же организм способен деградировать сразу несколько близкородственных соединений. Процесс природной селекции подходящих микроорганизмов может быть дополнен искусственной селекцией, например, с использованием селекционного реактора. Эта система в процессе своего функционирования создает благоприятные условия для роста культуры, обладающей нужным набором метаболических активностей. Посевным материалом для реактора может быть биомасса активного ила с заводов по переработке городских отходов [21]. [c.133]

    Метаболизм фенилаланина и тирозина у животных и бактерий [c.144]

    Важные моменты контроля метаболизма связаны с пространственной организацией клетки. У бактерий периплазматическое пространство (гл. 5, разд. Г) изолировано от цитозоля, и ферменты, локализованные в этом пространстве, не смешиваются с другими ферментами клетки. Ряд ферментов локализован в мембране или прикреплен к ней. Эукариотические клетки имеют больше изолированных отсеков, чем бактериальные это ядра, митохондрии (включающие их внутреннюю полость и межмембранное пространство), лизосомы, микротельца и вакуоли. Еще один ограниченный мембранами отсек — это цитозольные канальцы и пузырьки эндоплазматического ретикулума. [c.68]

    Представление об основных биохимических процессах, происходящих в клетках, на примере сапрофитных микроорганизмов с аэробным типом питания [2], дает упрощенная схема метаболизма на рис. 1.2. Даже в таком упрощенном виде схема позволяет оценить многообразие и сложность внутриклеточных процессов, насчитывающих несколько тысяч реакций, в результате которых синтезируются клеточные вещества. Математическое описание всей совокупности данных реакций и использование такой модели для практических целей представляет собой чрезвычайно сложную задачу. Наряду с микробиологическими процессами, направленными на образование биомассы микроорганизмов или ценных продуктов клеточного метаболизма большую роль в БТС занимают процессы биологической очистки, протекающие с участием бактериальных клеток по следующей трофической схеме органические загрязнениям бактерии-> простейшие. В процессе биологической очистки сточных вод, содержащих органические и минеральные вещества, формируется биоценоз активного ила, включающий бактерии, простейшие и многоклеточные организмы. В процессе потребления органических загрязнений происходит интенсивный рост бактерий и ферментативное окисление органических веществ. По мере удаления из среды питательных веществ происходит эндоген- [c.10]


    Пируват может быть окислен как источник энергии или использован для синтеза клеточных компонентов. Весь этот путь, по всей видимости, занимает важное место как в метаболизме растений и животных [72], так и в метаболизме бактерий. [c.121]

    Мочевина СН4Н20 является конечным продуктом метаболизма белков в организмах животных. Допустим, что аэробные бактерии могут разлагать ее следующим образом  [c.169]

    В отличие от капсул чехлы имеют тонкую структуру. Нередко в них обнаруживают несколько слоев с разным строением (см. рис. 4, 4). Чехлы ряда бактерий, метаболизм которых связан с окислением восстановленных соединений металлов, часто инкрустированы их окислами. Между этими структурами у прокариот обнаружено много переходных форм, так что иногда нельзя четко отграничивать капсулу от слизистых клеточных выделений или капсулу от чехла. [c.38]

    Чехлы. В отличие от капсул чехлы имеют тонкую структуру. Нередко в них обнаруживают несколько слоев с разным строением. Чехлы ряда бактерий, метаболизм которых связан с окислением восстановленных соединений металлов, часто инкрустированы их окислами. [c.27]

    Некоторые микроорганизмы способны разрушать молекулу нафталина, используя ее в качестве источника углерода. Этот процесс описан для спороносных бактерий, коринебактерий, организмов рода Pseudomonas. Деградация молекулы нафталина происходит в соответствии с общими принципами метаболизма ароматических соединений - гидроксилирование, расщепление одного из колец, образование катехола. [c.113]

    Для двух групп бактерий, метаболизм которых связан с соединениями серы, характерно отложение в клетках молекулярной серы. Сера накапливается, когда в среде содержится сероводород, и окисляется до сульфата, когда весь сероводород среды оказывается исчерпанным. Для аэробных тионовых бактерий, окисляющих H2S, сера служит источником энергии, а для анаэробных фотосинтезирующих серобактерий она является донором электронов. [c.55]

    Исследование кинетики коррозии СтЗ в средах, содержащих СВБ и сероводород, показало, что процесс коррозии стимулируется анодной реакцией при воздействии продуктов жизнедеятельности бактерий. В стерильной среде, содержащей сероводород (до 500 мг/л), скорость коррозии незначительна. Это объясняется, вероятно, образованием прочной адгезионной пленки сульфита железа. Продукты метаболизма СВБ разрыхляют эту пленку и таким образом ускоряют процесс коррозии. Целесообразно применение ингибиторов-бактерицидов для одновременного торможения развития и предотвращения процесса электрохимической коррозии металлов [8]. [c.27]

    ДЫХАНИЕ, совокупность процессов, обеспечивающих поступление в организм атмосферного или растворенного в воде О2, использование его в окислит.-восстановит. р-циях, а также удаление из организма СО и нек-рых др. соед.-конечных продуктов обмена в-в. Играет фундам. роль в энергообеспечении и метаболизме у большинства организмов. При Д. кислород участвует гл. обр. в окислении орг. соед. с. образованием Н О или HjO (в нек-рых случаях-О ) или включается в молекулу окисляемого в-ва. Нек-рые организмы (гл. обр. мн. бактерии) могут использовать в качестве акцептора электронов не только О , но и др. соед. с высоким сродством к электрону, напр, нитраты и сульфаты. В этих случаях иногда говорят о нитратном и сульфатном Д. в отличие от аэробного (кислородного) Д. [c.124]

    К основным питательным веществам, используемым микроорганизмами в качестве исходного сырья для биосинтеза, следует отнести углерод, азот и фосфор. При аэробном культивировании микроорганизмов в энергетическом метаболизме клетки непосредственное участие принимает кислород, выполняя роль акцептора электронов. С участием молекулярного кислорода происходит окисление углеводородного субстрата с последовательным образованием надвинного спирта, а затем жирной кислоты. При анаэробном процессе микроорганизмы получают энергию в результате окисления, когда акцепторами электронов выступают неорганические соединения. У фототрофов (фотосинтезирующих бактерий, водорослей) в качестве источника энергии служит энергия солнечной радиации. [c.10]

    B. Если к митохондриям, функции которых подавлены олигомицином, добавить 2,4-динитрофенол, произойдет ли стимуляция образования СО 2, подобно тому как при добавлении T S к метан-образующим бактериям, метаболизм которых подавлен D D, стимулируется образование СН4 Объясните ваш ответ. [c.83]

    Биолог. Да, Его называют еще единой энергетической валютой, так как он используется во всех живых организмах и растениях. Видимо, это дань ставшей очень модной сейчас экономике,,. Интересно, что по многим свойствам митохондрии очень похожи на бактерии их характерные размеры составляют несколько десятых микрометра, митохощфии имеют собственную ДНК и могут делиться самостоятельно, независимо от деления самой клетки, но "подстраиваясь" под ее потребности в энергии. Поэтому плотность митохондрий в клетках организма соответствует средней интенсивности процессов метаболизма [Христолюбова, 1977, Лузиков, 1980 Кемп, Арме, 1988], [c.36]

    Накопление Г в клетках бактерий характеризует их стрессовое состояние, вызванное ухудшением условий роста, и инициирует перестройку метаболизма бактерий, необходимую для адаптации клеток к дефициту аминокислот и др источников питания При зтом подавляется синтез рнбосомных и тРНК, транскрипция генов, кодирующих структуру рибосомных белков и белковых факторов трансляции, транспорт углеводов, синтез липидов и дыхание Одновременно усиливается транскрипция оперонов, ответственных за биосинтез аминокислот, и ускоряется распад клеточных белков [c.618]


    Ван Нил> (1941) исследовал метаболизм пурпурных бактерий и подтвердил, что им действительно необходим свет для роста. Так, В. ТЫогкокасеае могут развиваться в среде, содержащей способные окисляться неорганические соедщ ения серы и бикарбонат как источник двуокиси углерода, но только при облучении. Типичные для этих случаев превращения, подтвержденные экспериментально, представлены ниже  [c.580]

    У ЖИВОТНЫХ этот цикл повторяется до достижения нужной длиньи углеродной цепи кислот. Подобный механи зм объясняет, почему все жирные кислоты содержат нормальную цепь и четное число углеродных атомов. В некоторых бактериях этот цикл обрывается на стадии образования масляной кислоты. В нормальных организмах промежуточные продукты цикла связаны через кофермент с белком и не могут быть выделены из липидной фракции. При диабете метаболизм нарушается,, и продукты неполного окисления (извеспные под названием етоновых тел) накапливаются в крови и моче (кетонурия). Кетоновые тела включают промежуточные продукты цикла ацетоуксусную кислоту (и ацетон как продукт расщепления последней) и а-оксимасляную кислоту. [c.732]

    БРОЖЕНИЕ, анаэробный ферментативный окисл.-восстановит. процесс П[)евра1цсния орг. в-в, благодаря к-рому Организмы получают энергию, нeoбxoДII yю для хсизнсдея-тельности. Может осуществляться у животных, растений и мн. микроорганизмов. Нек-рые бактерии, микроскопич. грибы и простейщие растут, исгюль )уя только ту энергию, к-рая освобождается при Б. Исходные субстраты н Б.— гл. обр. углеводы, орг. к-тьг, пуриновые и пиримидиновые основания. В зависимости от сбраживаемого субстрата и путей его метаболизма в результате Б. могут образовываться спирты (этанол и др.), карбоновые к-тьг (молочная, масляная и др.), ацетон и другие орг. соед., СО2, а в ряде случаев — Нг. В соответствии с осн. продуктами, образующимися при Б., различают спиртовое, молочнокислое, маслянокислое и др. виды Б, [c.82]

    Изучение полифункциональных природных соединений целесообразно начать с классов оксикислот, оксокис-лот и аминоспиртов, поскольку, во-первых, эти соединения достаточно широко представлены в живом мире на различных этапах его проявления — они встречаются в свободном виде (гидрок-сикислоты растений) и как фрагменты достаточно сложных молекул (фосфолипиды и сфингозины животных и бактерий), некоторые из них образуются в процессе метаболизма веществ первичного биосинтеза(окисление жирных [c.18]

    Экспериментально найдено, что из пар антиподов молекул а-аминокислот в жизнедеятельности организмов практически всегда и везде фигурируют только L-изомеры. Это значит, что организмы синтезируют только L-a-ами-нокислоты и потребляют тоже только L-a-аминокислоты. Можно проделать такой опыт если какой-либо организм, будь то бактерия или животное, питать рацемической смесью а-аминокислот, мы обнаружим через определенное время, что из смеси полностью исчезли L-изомеры и остались нетронутыми все молекулы (если мы сможем их подсчитать) D-a-аминокислот. Т.е. мы видим, что реакции биосинтеза а-аминокислот и последующего их метаболизма in vivo строго стереоспецифичес-кие процессы. [c.69]

    Изониазид представляет собой интересный химиотерапевтический препарат. Обычно его дают вместе с другими противотуберкулезными препаратами это снижает вероятность генетической мутации бактерий в штамм, устойчивый к применяемому химиотерапевтическому средству. Биохимика, наверно, заинтересует то, что изониазид относится к тем немногим препаратам, метаболизм которых подвержен генетическому контролю. Как показали Д. Ивенс и сотрудники, необычно медленный метаболизм изоииазида является аутосомным рецессивным признаком. Изучение генетического контроля метаболизма лекарственных препаратов представляет огромный интерес для химиков, биохимиков и специалистов в области молекулярной биологии. [c.218]

    РЕСТРИКЦИЯ И МОДИФИКАЦИЯ ДНК (от позднелат. restri tio-ограничение и modifi atio-видоизменение), специфич. р-ции метаболизма ДНК в клетках бактерий, обеспечивающие защиту собственной ДНК от встраивания в нее последовательностей ДНК чужеродного происхождения. [c.259]

    Эндотоксины (обьпшо сложные белки) находятся в наружных слоях клеточных стенок патогенных грамотрицат. бактерий, высвобождаются после их гибели и представляют собой продукты их метаболизма. [c.602]

    Существенный недостаток методов химического синтеза аминокислот состоит в получении целевых препаратов в виде рацемической смеси D- и L-стереоизомерных форм. Подавляющее большинство природных аминокислот относится к L-ряду. D-a-ами-, нокислоты обнаружены лишь в составе гликопротеинов клеточных стенок бактерий, антибиотиков и некоторых токсинов. Проницаемость L-аминокислот в клетке в 500 раз превышает таковую ее антипода. Стереоспецифичны также транспорт и метаболизм аминокислот. Исключением в этом отношении является лишь метионин, метаболизм которого нестереоизбирателен, благодаря чему данная аминокислота получается преимущественно путем химического синтеза. Разделение рацематов других аминокислот — дорогая и чрезвьиайно трудоемкая процедура. [c.42]

    После заражения часть Ti-плазмиды встречается в хромосомах клеток растения-хозяина. Следовательно, А. tumefa iens встраивает часть своего генома в ДНК растительной клетки и заставляет ее таким способом изменять метаболизм, синтезируя вещества, необходимые для бактерий. Именно это свойство А. tumefa iens и послужило поводом для создания на основе Ti-плазмиды вектора, доставляющего необходимые гены в клетку. [c.146]

    По имеющимся данным, мидии влияют на плотность и прозрачность воды. Они обладают высокой фильтрационной способностью. По расчетам, мидиевое поселение северо-западной части Черного моря способно профильтровать за сутки 134 км воды. Мидии способствуют также уменьшению нефтяного запаха в воде и снижают ее окисляемость при концентрации нефти, не препятствующей их нормальной фильтрации. После мидий нефть выходит в связанном виде с продуктами выделения, что в некоторой степени исключает вторичное загрязнение морской воды [93]. О способности мидий отфильтровывать из морской воды нефть упоминается и в работе [61]. Предполагается участие мидий в непосредственном метаболизме углеводородов, который может идти за счет деятельности бактерий в кишечнике моллюсков, выборочное удаление через мембраны и т.п. [c.61]


Библиография для Бактерии метаболизм: [c.318]   
Смотреть страницы где упоминается термин Бактерии метаболизм: [c.85]    [c.56]    [c.444]    [c.300]    [c.132]    [c.151]    [c.200]    [c.291]    [c.347]    [c.317]    [c.617]    [c.110]    [c.217]    [c.191]    [c.29]    [c.172]   
Биохимия Том 3 (1980) -- [ c.22 ]




ПОИСК





Смотрите так же термины и статьи:

Метаболизм



© 2025 chem21.info Реклама на сайте