Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Метаболизм анаэробный

Рис. 3.15. Метаболизм ФАО в аэробных и анаэробных условиях. ПНО — полимерные насыщенные оксикислоты, Гл — гликоген, ПФ — полифосфаты, НАс — ацетат. Рис. 3.15. Метаболизм ФАО в аэробных и <a href="/info/69500">анаэробных условиях</a>. ПНО — <a href="/info/1847388">полимерные насыщенные</a> оксикислоты, Гл — гликоген, ПФ — полифосфаты, НАс — ацетат.

    При аэробном или анаэробном метаболизме организмы получают энергию в процессе окисления подложки — сахара (глюкозы) или какого-либо другого материала (битума). Это окисление с выделением энергии происходит путем перехода протонов или электронов через ряд стадий, регулируемых ферментами, до появления конечного акцептора электронов. В аэробных процессах конечным акцептором электрона или иона водорода является кислород. В анаэробных процессах таким акцептором является окисленный материал типа нитрата или сульфата. Опыт показал, что аэробный метаболизм эффективнее анаэробного, так как для роста в аэробных процессах требуется меньше материала подложки, чем в анаэробных при одинаковом количественном росте бактерий. Причиной такого явления, известного как эффект Пастера, является большее выделение энергии в процессе аэробного метаболизма. [c.186]

    Наряду с аэробным метаболизмом углеводов мозговая ткань способна к довольно интенсивному анаэробному гликолизу. Значение этого явления [c.633]

    Ряд культур дрожжей, в том числе Sa haromy es, в условиях недостаточного обеспечения среды кислородом и при наличии углеводов получают энергию путем анаэробного расщепления сахаров (гликолиз) при этом образуется этанол. Как только в среде появляется кислород, клетки дрожжей сразу переключаются на энергетически более выгодный аэробный метаболизм (Пастеровский эффект) и способны метаболизировать не только глюкозу, но и накопившийся в среде этанол. Усваивать этанол дрожжи могут благодаря наличию в их клетках фермента алько-гольдегидрогеназы (рис. 41). [c.106]

    В течение многих лет биохимическое окисление ассоциировалось преимущественно с отщеплением водорода. При этом всегда подразумевалось, что кислород, входящий в состав органических веществ, неизменно попадает туда из молекул воды. Молекула воды может присоединяться по двойной связи, и образующийся спирт подвергается действию дегидрогеназ. И тем не менее время от времени появлялись указания, что небольшие количества О2 существенны и необходимы даже для клеток, растущих в анаэробных условиях [134]. В 1955 г. Хаяиши и Масон независимо продемонстрировали, что Ю иногда Включается в органические соединения непосредственно из Юг, как показано в уравнении (10-43). Сегодня нам известно большое число оксигеназ, участвующих в образовании таких существенных для метаболизма соединений, как стерины, простагландины и биологически активные производные витамина О. Оксигеназы оказываются необходимыми и для катаболизма многих веществ, чаще всего действуя на неполярные группы, трудно поддающиеся действию других ферментов [134—136]. [c.434]


    Сера входит в состав многих важных природных соединений, поэтому здесь уместно вкратце рассмотреть пути включения этого элемента в общий метаболизм. В неорганическом мире атомы серы существуют в различных состояниях, отличающихся степенью окисления. Прежде чем войти в состав органических молекул, они должны быть восстановлены до сульфида (S ). Многие микроорганизмы и высщие растения способны использовать в качестве источника серы сульфат-ион этот ион восстанавливается до сульфид-иона в последовательности реакций (схема 12), аналогичных тем, которые обеспечивают усвоение нитрат-иона (см. схему 8)-У некоторых анаэробных бактерий сульфат может служить конечным окислителем в этом случае перенос электронов также обеспечивает ступенчатое восстановление до сульфида. [c.404]

    Особенности метаболизма анаэробных микроорганизмов. Для [c.118]

    Своеобразен энергетический метаболизм экстремально термофильных архебактерий. Он облигатно или факультативно связан с метаболизмом молекулярной серы. Основные способы получения энергии включают аэробное или анаэробное (серное) дыхание, а также брожение (табл. 34). Перечисленные в таблице способы энергетического существования экстремально термофильных архебактерий не исчерпывают всех, описанных к настоящему времени у отдельных представителей. [c.434]

    Для анаэробных прокариот, способных переносить контакт с О2 и его производными в относительно небольших масштабах, необходимо присутствие в клетках супероксиддисмутазы, убирающей 0 . Наличие каталазы при этом не обязательно, поскольку возникающая в реакции дисмутации и других реакциях перекись водорода разлагается спонтанно или с участием неферментативных катализаторов, и организмы в целом справляются с ней в этих условиях. Таким образом, при осуществлении энергетического метаболизма анаэробного типа для устранения токсических эффектов О2 достаточно одной ферментативной преграды в виде супероксиддисмутазы. [c.302]

    О2 (последний не участвует в осуществляемых ими метаболических реакциях), но способные расти в его присутствии, являются по типу осуществляемого ими метаболизма облигатными анаэробами, устойчивыми к О2 внешней среды. Примером таких организмов служат молочнокислые бактерии. Многие прокариоты, относящиеся к этой же группе, приспособились в зависимости от наличия или отсутствия О2 в среде переключаться с одного метаболического пути на другой, например с дыхания на брожение, и наоборот. Такие организмы получили название факультативных анаэробов, или факультативных аэробов. Представителями этой физиологической группы прокариот являются энтеробактерии. В аэробных условиях они получают энергию в процессе дыхания. В анаэробных условиях источником энергии для них служат процессы брожения или анаэробного дыхания. [c.129]

    Известны прокариоты, для метаболизма которых О2 не нужен, т. е. энергетические и конструктивные процессы у них происходят без участия молекулярного кислорода. Такие организмы получили название облигатных анаэробов. К ним относятся метан-образующие архебактерии, сульфатвосстанавливающие, маслянокислые и некоторые другие эубактерии. До сравнительно недавнего времени считали, что облигатные анаэробы могут получать энергию только в процессе брожения. В настоящее время известно много облигатно анаэробных прокариот, которые произошли от аэробов в результате вторичного приспособления к анаэробным условиям, приведшего к потере способности использовать О2 в качестве конечного акцептора электронов в процессе дыхания. Такие облигатные анаэробы получают энергию в процессах анаэробного д ы X а н и я, т. е. переноса электронов по цепи переносчиков на СО2, SO4, фумарат и другие акцепторы. [c.128]

    К основным питательным веществам, используемым микроорганизмами в качестве исходного сырья для биосинтеза, следует отнести углерод, азот и фосфор. При аэробном культивировании микроорганизмов в энергетическом метаболизме клетки непосредственное участие принимает кислород, выполняя роль акцептора электронов. С участием молекулярного кислорода происходит окисление углеводородного субстрата с последовательным образованием надвинного спирта, а затем жирной кислоты. При анаэробном процессе микроорганизмы получают энергию в результате окисления, когда акцепторами электронов выступают неорганические соединения. У фототрофов (фотосинтезирующих бактерий, водорослей) в качестве источника энергии служит энергия солнечной радиации. [c.10]

    Только небольшая часть облигатно анаэробных эубактерий может быть отнесена к первичным анаэробам, т.е. возникшим в до-кислородную эпоху и сохранившим до настоящего времени основные черты метаболизма того периода в результате обитания в анаэробных экологических нишах получение энергии в процессе брожения, отсутствие электронтранспортных цепей, слабо развитые биосинтетические способности. [c.261]


    Отрицательное действие О2 на азотфиксацию связано с восстановительной природой процесса. Возникшая первоначально у анаэробных прокариот, получающих энергию за счет брожения, способность к азотфиксации проявилась и в фуппах эубактерий с бескислородным фотосинтезом. Благоприятные условия для нее обеспечивались анаэробным типом метаболизма этих фупп. И только цианобактерии столкнулись с проблемой функционирования в клетке двух процессов, один из которых имеет восстановительную природу, а другой сопровождается выделением такого сильного окислителя, как О2. Возникла необходимость защиты или изолирования процесса азотфиксации от молекулярного кислорода. [c.317]

    Как предельно окисленное соединение СОз не может служить источником энергии, эта же ее особенность делает углекислоту и дорогостоящим источником углерода. И только обеднение среды восстановленными углеродными соединениями на начальном этапе развития жизни поставило организмы перед необходимостью использовать углекислоту в качестве источника углерода ценой больщих энергетических затрат, т.е. сформировать механизмы автотрофной фиксации СО3 и выработать способность синтезировать все углеродные соединения из углерода углекислоты. Однако было бы неверным считать, что до этого углекислота была инертным соединением и никак не вовлекалась в метаболизм анаэробных хемогетеротрофов. Наоборот, углекислота весьма активно использовалась в конструктивном и энергети- [c.290]

    При хранении образцов крови, как и в трупном материале. pH по различным причинам (напрнмер, из-за анаэробного метаболизма) падает до 5,5-6,0, что приводит к замедлению (вплоть до полной остановки) химического гидролиза, в результате чего образование БЭ из кокаина и Э из МЭ подавляется. Скорость же энзимного гидролиза в этом случае хотя и может снижаться по сравнению со значениями, характерными для живого организма, но незначительно. В результате энзимный гидролиз протекает, когда химический замедлился или остановился. Таким образом, соотношение описанных процессов изменяется в пользу энзимного гидролиза, и в крови концентрация кокаина уменьшается, МЭ увеличивается, а БЭ остается неизмен- [c.94]

    БРОЖЕНИЕ, анаэробный ферментативный окисл.-восстановит. процесс П[)евра1цсния орг. в-в, благодаря к-рому Организмы получают энергию, нeoбxoДII yю для хсизнсдея-тельности. Может осуществляться у животных, растений и мн. микроорганизмов. Нек-рые бактерии, микроскопич. грибы и простейщие растут, исгюль )уя только ту энергию, к-рая освобождается при Б. Исходные субстраты н Б.— гл. обр. углеводы, орг. к-тьг, пуриновые и пиримидиновые основания. В зависимости от сбраживаемого субстрата и путей его метаболизма в результате Б. могут образовываться спирты (этанол и др.), карбоновые к-тьг (молочная, масляная и др.), ацетон и другие орг. соед., СО2, а в ряде случаев — Нг. В соответствии с осн. продуктами, образующимися при Б., различают спиртовое, молочнокислое, маслянокислое и др. виды Б, [c.82]

    Многие беспозвоночные являются истинно факультативными анаэробами, способными выживать длительное, а иногда и неопределенно долгое время в отсутствие кислорода [39а, Ь]. К ним принадлежат черви As aris (рис. 1-10), а также устрицы и другие моллюски. К числу главных конечных продуктов их анаэробного метаболизма относятся сукцинат и аланин. Первый может образовываться при смешанном кислом брожении наряду с пируватом. Далее у As aris lutnbri oid.es, который фактически является облигатным анаэробом, пируват превращает- [c.351]

    Метаболизм глюкозы у животных имеет две наиболее важные особенности [44]. Первая из них — это запасание гликогена, который в случае необходимости может быть быстро использован в качестве источника мышечной энергии. Однако скорость гликолиза может оказаться высокой — весь запас гликогена в мышце может быть истощен всего лишь за 20 с при анаэробном брожении или за 3,5 мин в случае окислительного метаболизма [45]. Таким образом, должен существовать способ быстрого включения гликолиза и его выключения после того, как необходимость в нем исчезнет. В то же время должна иметься возможность обратного превращения лактата в глюкозу или в гликоген (глю-конеогенез). Запас глюкогена, содержащегося в мышцах, должен пополняться за счет глюкозы крови. Если количество глюкозы, поступающей с пищей или извлекаемой из гликогена печени, оказывается недостаточным, то она должна синтезироваться из аминокислот. [c.503]

    Природным аналогом вещества поликомпонентного состава, включающим разные группы легких органических соединений, тяжелые углеводороды, сопутствующие природные газы, сероводород и сернистые соединения, высокоминерализованные воды с преобладанием хлоридов кальция и натрия, тяжелые металлы, включая ртуть, никель, ванадий, кобальт, свинец, медь, молибден, мышьяк, уран и др., является нефть [Пиков-ский, 1988]. Особенности действия отдельных фракций нефти и общие закономерности трансформации почв изучены достаточно полно [Солнцева,. 1988]. Наиболее токсичны по санитарно-гигиеническим показателям вещества, входящие в состав легкой фракции. В то же время, вследствие летучести и высокой растворимости их действие обычно не бывает долговременным. На аоверхности почвы эта фракция в первую очередь подвергается физико-химическим процессам разложения, входящие в ее состав углеводороды наиболее быстро перерабатываются микроорганизмами, но долго сохраняются в нижних частях почвенного профиля в анаэробной обстановке [Пиковский, 1988]. Токсичность более высокомолекулярных органических соединений выражена значительно слабее, но интенсивность их разрушения значительно ниже. Вредное экологическое влияние смолисто-асфальтеновых компонентов на почвенные экосистемы заключается не в химической токсичности, а в значительном изменении водно-физических свойств почв. Если нефть просачивается сверху, ее смолисто-асфальтеновые компоненты и циклические соединения сорбируются в основном в верхнем, гумусовом горизонте, иногда прочно цементируя его. При этом уменьшается норовое пространство почв. Эти вещества малодоступны микроорганизмам, процесс их метаболизма идет очень медленно, иногда десятки дет. Подобное действие тяжелой фракции нефти наблюдается на территории Ишимбайского нефтеперерабатывающего завода. Состав органических фракций выбросов других предприятий представлен в подавляющем большинстве легколетучими соединениями. [c.65]

    Действие ПДГК очень важно в метаболизме углеводов на стадии перехода от анаэробного обмена к аэробному. В этом случае образование ацетил-КоА способствует синтезу лимонной кислоты и началу цикла Кребса. [c.38]

    Нарушение метаболизма сердечной мышцы при ишемической болезни сердца. Для ишемизированного миокарда характерны сниженное окислительное фосфорилирование и повышенный анаэробный обмен. Раннее увеличение гликогенолиза и гликолиза за счет имеющегося в сердечной мышце гликогена и глюкозы, усиленно поглощаемой миокардом в начальной стадии ишемии, происходит в результате повышения внутриклеточной концентрации катехоламинов и цАМФ, что в свою очередь стимулирует образование активной формы фосфорилазы —фосфорилазы а и активацию фосфофруктокиназы—ключевого фермента гликолиза. Однако даже максимально усиленный анаэробный метаболизм не способен длительно защищать уже поврежденный гипоксический миокард. Очень скоро запасы гликогена истощаются, гликолиз замедляется вследствие внутриклеточного ацидоза, который ингибирует фосфофруктокиназу. [c.660]

    Газохроматографический анализ мочи позволяет также выявлять чрезмерное размножение бактериаль ной флоры тонкой кишки, приводящее к тяжелым забо леваниям органов пищеварения. Существующие тесты на степень бактериальной заселенности тонкой кишки довольно сложны и требуют интубации пациента. Парофазный анализ дает возможность получить косвенные данные о бактериальной активности органов пищеварения по содержанию в моче фенола и п-крезола, являющихся конечными продуктами метаболизма тирозина. Анаэробы дают п-крезол, в то время как аэробы и факультативные анаэробы продуцируют фенол. Нормальное выделение с мочой ежедневно составляет 45—60 мг -крезола и 7—12 мг фенола. Отношение этих количеств, равное примерно 6 1, отражает большую роль анаэробного метаболизма в здоровом пищеварительном тракте. В условиях чрезмерного размножения бактериальной флоры тонкой кишки общее выделение летучих фенолов существенно возрастает, а отношение п-крезола к фенолу снижается до 2 1. Таким образом, увеличение количества фенола, выделяемого с мочой, служит показателем повышенного количества энтеробактерий в тонкой кишке. [c.269]

    Для реализации биосинтеза и метаболизма необходима энергия, запасаемая в клетках в химической форме, главным образом в экзергонических третьей и второй фосфатной связи АТФ. Соответственно метаболические биоэнергетические процессы имеют своим результатом зарядку аккумулятора — синтез АТФ из АДФ и неорганического фосфата. Это происходит в процессах дыхания и фотосинтеза. Современные организмы несут память об эволюции, начавшейся около 3,5 10 лет назад. Имеются веские основания считать, что жизнь на Земле возникла в отсутствие свободного кислорода (см. 17.2). Метаболические процессы, протекающие при участии кислорода (прежде всего окислительное фосфорилирование при дыхании), относительно немногочисленны и эволюционно являются более поздними, чем анаэробные процессы. В отсутствие кислорода невозможно полное сгорание (окисление) органических молекул пищевых веществ. Тем не менее, как это показывают свойства ныне существующих анаэробных клеток, и в них необходимая для жизни энергия получается в ходе окислительно-восстановительных процессов. В аэробных системах конечным акцептором (т. е. окислителем) водорода служит Ог, в анаэробных — другие вещества. Окисление без Oj реализуется в двух путях брожения — в гликолизе и в спиртовом брожении. Гликолиз состоит в многостадийном расщеплении гексоз (например, глюкозы) вплоть до двух молекул пирувата (пировиноградной кислоты), содержащих по три атома углерода. На этом, пути две молекулы НАД восстанавливаются до НАД.Н и две молекулы АДФ фосфоршгируются— получаются две молекулы АТФ. Вследствие обратной реакции [c.52]

    Эти микроорганизмы в анаэробных и аноксических условиях потребляют ацетат и пропионат и накапливают их внутриклеточпо в виде полимерных насыщенных оксикислот (ПНО) (параллельно в клетках происходит потребление гликогена). Процесс накопления обеспечивается энергией, выделяющейся при разложении полифосфатов, в результате чего образуется ортофосфат. При pH выше 8,0-8,5 образующийся фосфат может осаждаться в виде солей кальция, алюминия или других металлов. В аэробных условиях эти организмы будут расти, потребляя фосфат, накапливая его в виде полифосфатов и возобновляя таким образом запас гликогена. Основным источником энергии, необходимой для осуществления этого процесса, является окисление ПНО. Рассматриваемые микроорганизмы также способны окислять и другие органические субстраты, доступные в аэробных условиях. Рис. 3.15 иллюстрирует в упрощенном виде метаболизм ФАО. [c.137]

    Некоторые анаэробные прокариоты, относящиеся к эу- и ар-хебактериям, — хемоавтотрофы. Фиксация СО2 у них происходит по ацетил-КоА-пути, не замкнутому в цикл (см. рис. 62). Образующийся ацетил-КоА служит акцептором третьей молекулы СО2, что приводит к синтезу пировиноградной кислоты (см. табл. 24). Возможно, этот путь фиксации СО2 — первая примитивная форма автотрофии. Кажется вполне вероятным, что дальнейшие поиски путей автотрофного метаболизма проходили параллельно с формированием аппарата для использования энергии света, поскольку на первом этапе эволюции энергетические и конструктивные процессы зависели от одних и тех же источников и, сле- [c.292]

    Основными продуцентами этилового спирта, имеющими широкое практическое применение, являются дрожжи — одноклеточные эукари-отные микроорганизмы, принадлежащие к разным классам высших грибов. Наиболее распространенный способ размножения дрожжей — почкование. Дрожжи — аэробы со сформированным аппаратом дыхания, но в анаэробных условиях осуществляют спиртовое брожение по пути, рассмотренному в предыдущем разделе, т.е. получают энергию за счет субстратного фосфорилирования. Конструктивный метаболизм дрожжей основан на их хорошо развитых биосинтетических способностях. Есть виды дрожжей, развивающиеся на простых синтетических средах эти дрожжи способны синтезировать все необходимые им сложные органические соединения. Существуют виды, нуждающиеся в определенных витаминах группы В. Добавление к питательной среде веществ, содержащих комплекс витаминов, аминокислот, сахаров, приводит, как правило, к заметному стимулированию роста дрожжей. [c.223]

    Важную роль в аэробном метаболизме пропионовых бактерий играет флавиновое дыхание , которому приписывают основную связь этих бактерий с молекулярным кислородом. В процессе фла-винового дыхания происходит перенос двух электронов с фла-вопротеинов на О2, сопровождающийся образованием перекиси водорода, которая разлагается бактериальной каталазой и перок-сидазой. Однако флавиновое дыхание не связано с получением клеткой энергии. Транспорт электронов в дыхательной цепи некоторых пропионовых бактерий сопровождается образованием АТФ, что может указывать на подключение к этому процессу ци-тохромов, однако эффективность окислительного фосфорилирования низка. Последнее, вероятно, объясняется несовершенством механизмов сопряжения. В то время как в аэробных условиях конечным акцептором электронов с НАД Н2 является О2, в анаэробных условиях им может быть нитрат, фумарат. [c.231]

    К клостридиям относят большое количество видов бактерий, число которых постоянно возрастает. Это один из самых крупных родов среди эубактерий. Принадлежность к роду определяется на основании только трех признаков 1) способности образовывать эндоспоры 2) облигатно анаэробного характера энергетического метаболизма 3) неспособности осуществлять диссимиляционное восстановление сульфата. Отсюда понятно, что эта таксономическая группа эубактерий чрезвычайно гетерогенна, о чем, в частности, свидетельствует интервал значений ГЦ-оснований ДНК, молярное содержание которых с учетом описанных новых видов занимает область от 21 до 57 %. [c.241]

    Свойство предельной окисленности молекулы СО2 используется в энергетическом метаболизме ряда анаэробных эубактерий, получающих энергию в процессе брожения, где СО2 служит для удаления избытка восстановителя, т.е. как конечный акцептор электронов. Эта же особенность молекулы СО2 находит применение и в энергетическом метаболизме некоторых анаэробных эубактерий (ацетогены) и архебактерий (метаногены), но у них электроны на СО2 поступают через цепь связанных с мембраной переносчиков электронного транспорта. СО2, участвующая в реакциях энергетического метаболизма, не включается в вещества клетки, а продукты ее восстановления (в виде молекул формиата, ацетата, метана) накапливаются в среде. В наибольшей степени способность вовлекать СО в метаболизм среди первично анаэробных хемогете-ротрофных эубактерий проявляется в фуппе клостридиев. [c.291]

    В клетках помимо необычного бактериохлорофилла g обнаружено небольщое количество каротиноидов. Пигменты локализованы в ЦПМ, развитой системы внутрицитоплазматических мембран и хлоросом нет. Способ существования — облигатная фото-трофия. Рост возможен только на свету в анаэробных условиях. Источниками углерода могут служить некоторые органические кислоты уксусная, молочная, пировиноградная, масляная. Показана также возможность функционирования путей автотрофной фиксации СО2 (модифицированный и неполный восстановительный ЦТК). Описанные гелиобактерии проявляют очень высокую чувствительность к молекулярному кислороду. Дыхательный метаболизм отсутствует. Обнаруженные виды — активные азотфиксаторы. [c.306]

    Способность к энергетическому использованию Hj может сочетаться с конструктивным метаболизмом облигатно гетеротрофного типа (например, у представителей родов Azotoba ter или A etoba ter) или происходить в строго анаэробных условиях (сульфатвосстанавливающие бактерии), что не позволяет относить обладающие этими особенностями организмы к водородным бактериям. Таким образом, водородные бактерии представляют только часть эубактерий, способных использовать Hj для получения энергии. Пути использования молекулярного водорода эубактериями суммированы в табл. 31. Водородные бактерии характеризуются способностью сочетать конструктивный метаболизм автотрофного типа (вариант 1) с получением энергии за счет окисления Hj с участием молекулярного кислорода (вариант 3). [c.384]

    Электронтранспортная цепь водородных бактерий по составу аналогична митохондриальной (см. рис. 94). Большинство из них относится к облигатным аэробам. Однако среди облигатных аэробов преобладают виды, тяготеющие к низким концентрациям О2 в среде. Особенно чувствительны к О2 водородные бактерии, растущие хемолитоавтотрофно, а также в условиях фиксации молекулярного азота. Последнее объясняется инактивирующим действием молекулярного кислорода на гидрогеназу и нитрогеназу — ключевые ферменты метаболизма Hj и фиксации N2. Для некоторых водородных бактерий показана способность расти и в анаэробных условиях, используя в качестве конечного акцептора электронов вместо О2 нитраты, нитриты или окислы железа. Примером факультативно аэробных водородных бактерий может служить Para o us denitri ans, у которого в аэробных условиях работает электронтранспортная цепь, аналогичная митохондриальной, а в отсутствие О2 электроны с помощью соответствующих редуктаз переносятся на N0 и NOj, восстанавливая их до N2 (рис. 98, В). Однако большая часть факультативно аэробных водородных бактерий способна к восстановлению нитратов только до нитритов. [c.385]

    Таким образом, основные способы существования сульфатре-дуцирующих эубактерий включают хемоорганотрофию (источники энергии — брожение или окисление органических субстратов в процессе сульфатного дыхания) или хемолитотрофию (источник энергии — анаэробное окисление Н2 с акцептированием электронов на 80Г) в сочетании с конструктивным метаболизмом гетеротрофного или автотрофного типа. [c.390]

    Способы получения архебактериями энергии включает бес-хлорофилльный фотосинтез, брожение, аэробное и анаэробное дыхание, при котором конечными акцепторами электронов могут быть СО2 и другие С,-соединения, молекулярная сера, N0 , Ре " и Мо . У организмов, получающих энергию с использованием электронного транспорта, в качестве электронпереносящих компонентов обнаружены ферредоксины, хиноны, цитохромы. Электронный транспорт сопряжен с трансмембранным переносом протонов. Механизм окислительного фосфорвдирования архебактерий соответствует хемиосмотическому принципу и сходен с аналогичным механизмом эубактерий и митохондрий. В то же время следует подчеркнуть, что архебактериям свойственны типы энергетического метаболизма, не встречающиеся у эубактерий и эукариот. Это бесхлорофилльный фотосинтез и особый тип анаэробного дыхания, в процессе которого происходит образование метана. [c.415]

    Так как метаногены используют ограниченный набор субстратов, их распространение в природе тесно связано с развитием образующих эти субстраты микроорганизмов. Совместно с последними метанобразующие бактерии обеспечивают протекание в природе важного крупномасштабного процесса — анаэробного разложения органических соединений, в первую очередь целлюлозы. Вьщеляют 3 основные стадии анаэробного разложения органического вещества. Первая — определяется деятельностью микроорганизмов с активными гидролитическими ферментами. Они разлагают сложные органические молекулы (белки, липиды, полисахариды) на более простые органические соединения. Вторая стадия связана с активностью водородобразующих бродильщиков, конечными продуктами метаболизма которых являются Н2, СО2, СО, низшие жирные кислоты (в первую очередь ацетат) и спирты. Завершают анаэробную деструкцию органического вещества метанобразующие бактерии. Поскольку главным экологическим фактором, определяюшим развитие метаногенов, является выделение Н2, в природе созданы и существуют ассоциации между водородвьщеляющими и метанобразующими бактериями. Примером такой естественной системы могут служить бактериальные ассоциации, обитающие в рубце жвачных животных и обеспечивающие разложение целлюлозы, пектина и других органических субстратов. О масштабности процессов, связанных с деятельностью метанобразующих бактерий, свидетельствует тот факт, что более 20 % мировых запасов СН4 имеют биогенное происхождение. [c.431]

    Гомоферментативное молочнокислое брожение идентично по химизму реакциям гликолиза в анаэробных условиях. В результате из глюкозы образуется молочная кислота с почти 100%-м выходом, при гетероферментативном (смешанном) молочнокислом брожении из глюкозы, кроме молочной кислоты, образуются другие продукты в процессе ее метаболизма по пентозо-фосфатному пути (18.2.7). [c.253]


Смотреть страницы где упоминается термин Метаболизм анаэробный: [c.293]    [c.666]    [c.266]    [c.128]    [c.135]    [c.224]    [c.291]    [c.317]    [c.408]    [c.194]   
Современная общая химия Том 3 (1975) -- [ c.0 ]

Современная общая химия (1975) -- [ c.0 ]

Стратегия биохимической адаптации (1977) -- [ c.31 , c.40 , c.43 , c.44 , c.60 , c.65 , c.68 , c.72 ]




ПОИСК





Смотрите так же термины и статьи:

Аланин продукт анаэробного метаболизма

Анаэробный метаболизм белых мышц позвоночных физиологическая природа сил отбора

Метаболизм

Метаболизм анаэробный, аэробный

Сукцинат образование при анаэробном метаболизме



© 2025 chem21.info Реклама на сайте