Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Плазмида рЕТ-векторов

    Рассмотренные плазмиды — векторы с негативной селекцией, так как гибридные молекулы ДНК выявляются по инактивации определенных генов устойчивости к антибиотикам. Первоначально на агаризованной селективной среде с определенным антибиотиком отбирают клоны клеток, содержащих или гибридные, или исходную плазмиды, а лишь затем перепечаткой на среду с антибиотиком, ген устойчивости к которому в гибридных плазмидах должен быть нарушен, выявляют клоны гибридов. [c.243]


    Бинарные векторы представляют собой бактерии, содержащие две разные Т1-плазмиды. Одна из них несет vir-область и обеспечивает интеграцию в геном растительной клетки Т-области, содержащей любые гены другой плазмиды. В этом случае двойной кроссинговер не требуется. [c.147]

    Плазмиды наиболее часто используют в качестве векторов. Плазмиды -небольшие кольцевые двухцепочечные ДНК из цитоплазмы бактерий, они могут содержать от 2 до 100 тыс. пар оснований. Каждая плазмида имеет гены, которые могут реплицироваться, транскрибироваться, транслироваться независимо от хромосомных генов, но одновременно с ними. Плазмиды можно перемещать из одной клетки в другую их можно встраивать в другие гены, которые затем переносятся вместе с плазмидой и становятся частью генома клетки-хозяина. [c.61]

    После конструирования вектора рекомбинантные плазмиды смешивают с клетками для трансформации. Например, клетки кишечной палочки со встроенным вектором выращивают на питательной среде, и в процессе этого роста образуются рекомбинантные ДНК, содержащие гены из разных организмов. Поскольку при этом образуются сходные молекулы (клоны), такой процесс называется клонированием. Далее клонированную ДНК вводят в клетки, где и происходит экспрессия генов, т.е. процессы транскрипции и трансляции с образованием необходимого белка. [c.61]

    После заражения часть Ti-плазмиды встречается в хромосомах клеток растения-хозяина. Следовательно, А. tumefa iens встраивает часть своего генома в ДНК растительной клетки и заставляет ее таким способом изменять метаболизм, синтезируя вещества, необходимые для бактерий. Именно это свойство А. tumefa iens и послужило поводом для создания на основе Ti-плазмиды вектора, доставляющего необходимые гены в клетку. [c.146]

    Клонирование генов (Gene loning) Система методов, использующаяся для получения клонированных ДНК вьщеление нужного гена из какого-либо организма, встраивание его в плазмиду (вектор), введение в клетку организма-хозяина, многократная репликация. [c.550]

    ДНК, используют для трансформации бактериальных клеток специальных штаммов Е. oli. Трансформация бактерий плазмидами векторов основана на способности клеток акцептировать внутрь себя молекулы ДНК (компетентности). Трансформацию клеток Е. oli обычно проводят одним из двух методов с помощью кальциевого шока или электропорацией. В обоих случаях бактериальная мембрана становится более проницаема для молекул ДНК, последние входят в протоплазму бактериальной клетки. [c.37]

    Инициация репликации плазмиды R1 Е. сой регулируется белком-репрессором, кодируемым одним из генов R1. Были получены мутантные плазмиды, которые кодируют аномальный репрессор или же имеют несовершенный механизм регуляции его образования. Некоторые из этих мутантов т-температурочувствительные (репрессор неактивен при 43 °С). При 30 °С репликация идет нормально, и на клетку образуется 1—2 плазмидные копии, а при 43 °С репликация инициируется гораздо чаще, так что в клетке накапливается по нескольку сот плазмид. Небольшой сегмент R1, содержащий участок начала репликации и связанные с ними регулирующие элементы, был использован для создания плазмид-векторов, п-рименяемых при клонировании разнообразных генов. -Преимущество таких векторов заключается в том, что при повышенной температуре с их помощью можно получать множества копий клонируемого гена, а следовательно, и много белка, кодируемого этим геном. [c.306]


    В качестве таких векторов для клонирования (или клонирующих векторов) любых фрагментов чужеродной ДНК используются фаг X и множество различных плазмид. Вектор с клонируемым фрагментом ДНК может проникнуть в клетку Е. соН после того, как клетка обработана ионами Са Такая процедура позволяет конструировать штаммы бактерий, несущих определенные фрагменты чужеродной ДНК (клоны), и размно- [c.276]

    Далее была предпринята попытка усилить сверхпродукцию треонина, увеличив число копий мутантного треонинового оперона в клетке Е. oli путем клонирования этого оперона в составе многокопийной гибридной плазмиды. Полный треониновый оперон клонировали на плазмиде-векторе рВР322. Гибридная плазмида, трансформированная в Е. соИ К12, существовала в микроорганизме стабильно (20 копий в клетку). Приблизительно во столько же раз в клетке увеличилось и количество ферментов, кодируемых треониновым опероном. Количество треонина, синтезируемого такими клетками Е. соИ, достигало 20—30 г/л. Это в два-три раза превышало лучшие мировые достижения того времени. [c.110]

    Так, удаление участка из плазмиды ol Elb ведет к появлению у нее свойства подавлять развитие фага Т7 дикого типа. При встройке в плазмиду-вектор участка генома фага ТЗ, несу-niero гены фага, контролирующие лизис клетки, возникает способность такой плазмиды подавлять рост исходного фага дикого тина. Предполагается, что этот эффект обусловлен стимуляцией активности встроенных в плазмиду литических генов фага при инфекции клеток нормальным фагом (трансактивация), н результате чего бактерии лизируются и фаг не успевает образовать потомства. [c.205]

    Представим ситуацию типичного опыта, при котором смешиваются фрагменты ДНК, полученные из хромосомы Е. соИ (или другой бактерии) после обработки крупнощепящей рестриктазой с ДНК плазмиды-вектора, подвергнутого той же обработке. Векторы устроены таким образом, что чаще всего при обработке рестриктазой образуют один линейный фрагмент, зато хромосомная ДНК будет представлена набором приблизительно в 1000 разных фрагментов. При отжиге и лигировании такой смеси образуются не только гибридные молекулы, но и исходные векторы, что затрудняет дальнейшую работу, так как обычно селекция клеток, трансформированных рекомбинантной плазмидой, ведется на первом этапе по маркерам вектора. В этом случае клетки, получившие исходный вектор и рекомбинантную молекулу, неразличимы. [c.141]

    Для идентификации бактерий иногда используют также метод ДНК-зондов (генных зондов), являющийся разновидностью метода молекулярной гибридизации ДНК—ДНК. Реакция гибридизации ведется в этом случае не между двумя препаратами тотальной ДНК, а между фрагментом нуклеотидной последовательности ДНК (зондом), включающим ген (генетический маркер), ответственный за какую-то определенную функцию (например, устойчивость к какому-нибудь антибиотику), и ДНК изучаемой бактерии. Самым распространенным способом создания генных зондов является выделение специфических фрагментов путем молекулярного клонирования. Для этого вначале создают банк генов изучаемой бактерии расщеплением ее ДНК эндонуклеазами рестрикции, а затем отбирают нужный клон из суммы фрагментов ДНК методом электрофореза с последующей проверкой генетических свойств этих фрагментов методом трансформации. Далее выбранный фрагмент ДНК с помощью фермента лигазы вводят в состав подходящей плазмиды (вектора), а эту комбинированную-плазмиду вводят в удобный для работы штамм бактерий (например, Es heri hia соН). Из биомассы бактерии, несущей ДНК-зонд, выделяют плазмидную ДНК и метят ее, например, радиоизотопной меткой. Затем осуществляют гибридизацию ДНК зонда с ДНК бактерии. Образовавшиеся гибридные участки проявляют методом ауторадиографии. По относительной частоте гибридизации генетического маркера с хромосомой той или иной бактерии делают заключение о генетическом родстве этих бактерий с исследуемым штаммом. [c.197]

    После того как рекомбинантная ДНК сшита, ее вводят в живые клетки. Но поскольку она не способна к самовоспроизведению, ее разрушают внутриклеточные нуклеазы. Для того чтобы рекомбинантная ДНК стала составной частью генетического аппарата клетки, она должна либо встроиться (интегрироваться) в ее геном и реплицироваться за его счет, либо быть способной к автономной репликации. Принято молекулы ДНК, способные акцептировать чужеродную ДНК и автономно реплицироваться, называть векторными молекулами. К числу векторов относят плазмиды, бактериофаги, вирусы животных. Векторы должны обладать следующими особенностями  [c.117]

    Первый плазмидный вектор был получен С.Коэном (1973). Его источником была плазмида Е. соИ Rfi 5 с Mr 65 кДа. Плазмида стала родоначальником серии векторов и других структур. Особое место в генетическом манипулировании занимает плазмида, относящаяся к группе колициногенных плазмид Е. соИ. ol El реплицируется независимо от хромосомы и присутствует в количестве примерно 24 копий на клетку. Ее широко используют благодаря селективному маркеру в качестве вектора для клонирования фрагментов про- и эукариотической ДНК в Е. соИ. [c.118]


    Суммарная активность экспрессируемого гена возрастает с ростом числа копий рекомбинантной ДНК в расчете на клетку. Используя многокопийные плазмиды, можно получить сверхсинтез нужных белковых продуктов. Получены температурно-чувствительные мутантные плазмиды, способные накопить до 1 — 2 тыс. копий на клетку без нарушения жизненно важных функций бактерий. Обычно же используемые плазмидные векторы поддерживаются в клетке в количестве 20 — 50 копий. Получение бактериальных штаммов-сверхпродуцентов плазмидных генов — одна из важнейших задач современной биотехнологии в экономическом, медицинском и социальном аспектах. [c.123]

    Векторы для клонирования в таких системах представляют собой двойные репликоны, способные существовать и в . соН, и в той клетке хозяина, для которой они предназначены. С этой целью создают гибридные векторы, содержащие репликон какой-либо из плазмид Е. соИ и требуемый репликон (из бактерий, дрожжей и др.), и первоначально клонируют с последующим отбором требуемых генов в хорошо изученной системе. Затем вьщеленные рекомбинантные плазмиды вводят в новый организм. Такие векторы должны содержать ген (или гены), придающий клетке-хозя-ину легко тестируемый признак. [c.124]

    Векторы на основе Т1-нлазмнд. Некоторые виды агробактерий (Agroba teria) могут заражать двудольные растения, вызывая образование опухолей — корончатых галлов. Одним из самых сильных индукторов опухолей служит почвенная бактерия А. Ште/ас1ет. Способность этой бактерии к образованию опухоли связана с большой внехромосомной плазмидой, получившей название Т1-плаз- [c.145]

    Промежуточный и бинарный векторы. Эти векторы конструируются на основе Ti-плазмид. Промежуточный вектор получают путем ряда сложных операций. Сначала Т-область с помощью рестриктаз вырезают из плазмиды, вставляют в вектор для клонирования в клетке Е. oli и размножают. Затем внутрь Т-области встраивают чужеродный ген и вновь размножают. Полученную рекомбинантную плазмиду вводят в клетки А. tumefa iens, несущие полную Ti-плазмиду. В результате двойного кроссинговера между гомологичными участками Т-область рекомбинантной плазмиды, содержащая чужеродный ген, включается в Ti-плазмиду клетки хозяина, заместив в ней нормальную Т-область. Наконец, бактериями, имеющими Ti-плазмиду со встроенньпли генами, заражают растения, где эти гены встраиваются в геном растительной клетки. [c.147]

    Следующий этап - введение чужеродных генов в клетку организма-хо-зяина. Для введения генов используют векторы - плазмиды, фаги и другие образования, способные включаться в молекулу ДНК. [c.61]

    Как автономно реплицирующиеся генетические элементы плазмиды обладают всеми основными свойствами, которые позволяют использовать их в качестве вектора для переноса клонируемой ДНК. Но довольно часто природные (немодифицированные, несконструирован-ные) плазмиды бывают лишены некоторых обязательных для высококачественного вектора свойств. К таким важным свойствам относятся  [c.57]

    Оказавшись в бактериальной клетке, линейная молекула pLFR-5 со вставкой замыкается в кольцо благодаря спариванию os-сайтов. В такой стабильной конфигурации она может долгое время существовать в клетке и реплицироваться как гибридная плазмида, поскольку содержит все необходимые для этого элементы. Более того, ген устойчивости к тетрациклину обеспечивает рост колоний, несущих данную космиду, на среде с этим антибиотиком нетрансформированные клетки при этом погибают. Существуют и другие космидные векторы на основе фага X. [c.76]


Смотреть страницы где упоминается термин Плазмида рЕТ-векторов: [c.58]    [c.136]    [c.272]    [c.390]    [c.135]    [c.234]    [c.63]    [c.518]    [c.118]    [c.119]    [c.119]    [c.124]    [c.124]    [c.126]    [c.134]    [c.146]    [c.147]    [c.63]    [c.21]    [c.58]    [c.58]    [c.60]    [c.60]    [c.62]    [c.70]    [c.74]    [c.74]   
Молекулярная биотехнология принципы и применение (2002) -- [ c.108 ]




ПОИСК





Смотрите так же термины и статьи:

Вектор



© 2024 chem21.info Реклама на сайте