Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сферические бактерии

Рис. 2-3. Классификация и названия некоторых прокариот основаны на их внешнем виде. А. Бациллы-палочкообразные микроорганизмы, к которым относится Es heri hia oli, а также патогенные микробы, вызывающие дифтерию, столбняк и туберкулез. Б. Кокки-сферические бактерии. Иногда они объединяются, образуя пары (диплококки), группы (стафилококки) или цепочки (стрептококки показаны на этом рисунке). К коккам относятся бактерии, вызывающие скарлатину, некоторые виды пневмоний и раневые инфекции. В. Спирохеты-спиралевидные, часто очень длинные (до 500 мкм) бактерии. На рисунке показаны бактерии длиной от 10 до 15 мкм. К этому классу микроорганизмов относится возбудитель сифилиса. Рис. 2-3. Классификация и <a href="/info/1496562">названия некоторых</a> прокариот основаны на их <a href="/info/920990">внешнем виде</a>. А. Бациллы-палочкообразные микроорганизмы, к которым относится Es heri hia oli, а также <a href="/info/654202">патогенные микробы</a>, вызывающие дифтерию, столбняк и туберкулез. Б. Кокки-сферические бактерии. Иногда они объединяются, образуя пары (диплококки), группы (стафилококки) или цепочки (стрептококки показаны на этом рисунке). К коккам относятся бактерии, вызывающие скарлатину, <a href="/info/937219">некоторые виды</a> пневмоний и раневые инфекции. В. Спирохеты-спиралевидные, часто <a href="/info/1435359">очень длинные</a> (до 500 мкм) бактерии. На рисунке показаны бактерии длиной от 10 до 15 мкм. К этому классу микроорганизмов относится возбудитель сифилиса.

Рис. 1. Сферические формы бактерий Рис. 1. <a href="/info/328412">Сферические формы</a> бактерий
    Ультрафильтрация — это процесс разделения, фракционирования и концентрирования растворов с помощью полупроницаемых мембран. При этом жидкость непрерывно подается в пространство над мембраной под давлением 0,1... 1,0 МПа. Процессы ультрафильтрации выполняют на мембранах со средним диаметром пор от 0,01 до 0,1 мкм, называемых ультрафильтрационными мембранами. В процессах ультрафильтрации из исходной смеси отделяют самые мелкие бактерии и сферические вирусы, крупные белковые молекулы и т. п. Эти процессы используют для стерилизации жидких сред. [c.518]

Рис. 8.15. Развитие зубного налета А. Сферические бактерии (кокки) первыми заселяют зуб и, размножаясь, образуют пленку. Б. Микроорганизмы внедряются в эту пленку, состоящую из бактериальных секретов и веществ, содержащихся в слюне. В. Сообщество микроорганизмов растет и становится все более сложным появляются популяции палочковидных и нитевидных бактерий. Г. В климаксовом сообществе можно увидеть самые необычные ассоциации между различными популяциями, в том чиоте и напоминающие кукурузные початки. Рис. 8.15. Развитие <a href="/info/1278530">зубного налета</a> А. Сферические бактерии (кокки) первыми заселяют зуб и, размножаясь, <a href="/info/500103">образуют пленку</a>. Б. Микроорганизмы внедряются в эту пленку, состоящую из бактериальных секретов и веществ, содержащихся в слюне. В. Сообщество микроорганизмов растет и становится все <a href="/info/1522460">более сложным</a> появляются популяции палочковидных и <a href="/info/591023">нитевидных бактерий</a>. Г. В климаксовом сообществе можно увидеть самые необычные <a href="/info/362873">ассоциации между</a> <a href="/info/1338623">различными популяциями</a>, в том чиоте и напоминающие кукурузные початки.
    Бактерии, как правило, размножаются путем деления надвое (бинарное деление). Клетка удлиняется, а затем происходит образование поперечной перегородки, постепенно врастающей снаружи внутрь (или перетяжки), после чего дочерние клетки расходятся. У многих бактерий, однако, после деления в определенных условиях среды дочерние клетки некоторое время остаются связанными между собой, образуя характерные группы. При этом в зависимости от ориентации плоскостей деления и числа делений возникают различные формы, например у сферических бактерий — пары клеток (диплококки), цепочки (стрептококки), пластинки или же пакеты (сарцины и стафилококки). Палочковидные бактерии также могут образовывать пары или цепочки клеток. Размножение почкованием встречается у прокариот как исключение. Делению клетки предшествует удвоение, или репликация, бактериальной хромосомы. Однако диплоидная фаза в клеточном цикле ограничена очень короткой стадией. Таким образом, прокариоты гаплоидные организмы. [c.12]


    Обнаружены эубактерии, осуществляющие фотосинтез кислородного типа, весьма сходные с цианобактериями, но отличающиеся от них составом фотосинтетических пигментов отсутствием фикобилипротеинов и наличием хлорофилла Ь. Организмы названы прохлорофитами. В девятом издании Определителя бактерий Берги они выделены в порядок Pro hlorales. В составе порядка 3 рода, различающихся морфологическими и некоторыми физио-лого-биохимическими признаками. Это одноклеточные (сферические) или многоклеточные (нитчатые) формы, неподвижные или подвижные. Размножаются бинарным делением. Клеточная стенка грамотрицательного типа, напоминает таковую цианобактерий. Нити ДНК, не отграниченные от цитоплазмы мембраной, располагаются в центральной области клетки. [c.322]

    Кокки-шарообразные (сферические) бактерии [c.89]

    Одноклеточные бактерии с палочковидными или сферическими клетками, различаются поперечным бинарным делением (например, молочнокислые бактерии). [c.40]

    Коринебактерии — одноклеточные бактерии с тенденцией к структурной нерегулярности. Клетки сферические, палочковидные, булавовидные или слабоветвящиеся [c.40]

    Различают три основные формы бактерий — сферические (шаровидные), цилиндрические (палочковидные) и извитые. [c.27]

    Прокариоты морфологически относительно слабо дифференцированы, поэтому среди них можно различить лишь ограниченное число форм. В основном это либо сферические формы, либо прямые и изогнутые палочки. С таким внешним единообразием удивительно контрастирует чрезвычайное многообразие и пластичность метаболических процессов. В то время как животные и растения нуждаются в молекулярном кислороде, многие группы прокариот способны жить без доступа воздуха (в анаэробных условиях), получая необходимую для роста энергию в результате брожения или анаэробного дыхания. Другие группы прокариот обладают способностью использовать энергию света и строят нужные им вещества либо из органических соединений, либо из углекислоты (двуокиси углерода). Некоторые бактерии могут получать энергию путем окисления различных неорганических соединений или элементов. Среди бактерий широко распространена также способность к фиксации молекулярного азота. [c.12]

    Бактерии, имеющие палочковидную или цилиндрическую форму клетки, бывают разной длины от совсем коротких, почти кокков и коккобактерий (I—1,5 мкм), до длинных, иногда прямых, а иногда изогнутых или искривленных палочек и даже нитей (10—18 мкм и больше). Палочковидные формы бактерий широко распространены в природе. Их примерно в три раза больше, чем сферических. Это объясняется более выгодным соотношением массы и поверхности у цилиндра, чем у шара. Многие палочковидные формы подвижны. Органами движения служат так называемые жгутики. Среди палочковидных форм встречается довольно много видов, способных к образованию спор. Споры всегда образуются внутри клетки — эндоспоры. Спорообразующие палочковидные грамположительные аэробные формы называются бациллами и объединяются в род Ba illus. Споровые грамположительные анаэробные фор.мы, живущие без воздуха, [c.10]

    В соответствии с типом клетки-хозяина вирусы делят на три группы вирусы растений, животных и бактерий. Вирусы растений содержат только РНК и белок. Вирусы животных содержат белок и РНК или ДНК- Вирусы бактерий, называемые также бактериофагами, состоят обычно из ДНК и белка. В состав всех известных в настоящее время вирусов входят белок и генетически однородная нуклеиновая кислота. Некоторые крупные вирусы содержат также жиры и углеводы. Но мы ограничимся рассмотрением только мелких вирусов, структура которых довольно хорошо изучена. Обычно вирусные частицы имеют либо палочкообразную, либо сферическую форму. В первом случае вес частицы равен примерно 40 -10 , а во втором — 5 10 . Независимо от веса вирусной частицы молекулярный вес входящей в ее состав РНК равен обычно примерно 2- 10 . [c.358]

    Эти бактерии бывают цилиндрические или палочковидные и сферические или шаровидные (кокки), грамположитель.чые, неподвижные, несиорообразующие. Ге-тероферментативные молочнокислые бактерии наряду с молочной кислотой образуют летучие кислоты, спнрт, диоксид углерода и водород. [c.209]

    Рассмотрим коротко некоторые свойства микросфер, взяв их в качестве модели протоклетки. Протеиноидные микросферы имеют сферическую форму, диаметр их в зависимости от условий получения колеблется от 0,5 до 7 мкм (рис. 50). По величине и форме они напоминают кокковые формы бактерий, иногда образуют цепочки, похожие на цепочки стрептококков. Каждая микросфера содержит около Ю молекул протеиноида. Протеиноид- [c.194]

    Во многих упомянутых исследованиях с достаточной определенностью установлены условия, при которых происходит фиксация частиц на ближних или дальних расстояниях, хотя величина последних определялась расчетным путем с некоторым приближением. Вместе с тем известен обширный класс периодических коллоидных структур (ПКС), в которых дисперсные частицы фиксированы относительно друг друга на дальнем расстоянии. К таким ПКС относятся слои Шиллера, тактоиды, некоторые гели и гелеобразные осадки, тиксотропные пасты, колонии вирусов и бактерий [62—65]. Из монодисперсных сферических частиц, обладающих изотропным силовым полем, при наличии достаточно высокого энергетического барьера возникает правильная квазикристалли-ческая решетка [7, 12, 66]. При осаждении частиц из таких объемных ПКС в осадке образуются при подходящих условиях двумерные ПКС [67], которые нередко наблюдаются при микроскопических и электронно-микроскопических исследованиях (рис. 1). Такие коллоидные структуры с помощью электронной микроскопии обстоятельно изучаются в последнее время Дист-лером [68]. На поверхности жидкости модельные двумерные структуры исследовал Шуллер [69]. [c.132]


    Прокариоты без клеточной стенки. При воздействии определенными химическими веществами оказалось возможным получать в лаборатории из разных видов прокариот формы с частично (сферопласты) или полностью (протопласты) отсутствующей клеточной стенкой. Впервые это обнаружили при действии на бактериальные клетки лизоцимом, ферментом из группы гликозидаз, содержащимся в яичном белке, слезной жидкости и выделяемом некоторыми бактериями. Было выяснено, что лизоцим разрывает 3-1,4-гликозидные связи, соединяющие остатки Ы-ацетилглюкозамина и К-ацетилмурамовой кислоты в гетерополисаха-ридной цепи (рис. 1.3), что в конечном итоге может привести к полному удалению пептидогликана из клеточной стенки. Полученные под действием лизоцима сферопласты (из грамотрицательных прокариот) или протопласты (из грамположительных) принимают сферическую форму [c.18]

    Грациликуты объединяют грамотрицательные бактерии с двухслойной клеточной стенкой (они, как правило, содержат фосфо-липидную мембрану во внешнем слое клеточной стенки) Форма клеток у них различная — от сферической до палочковидной, от прямых до искривленных (изогнзггых), подвижные или неподвижные, не образуют эндоспор, размножаются делением (некоторые [c.29]

    Важными компонентами цитоплазмы являются рибосомы, ферменты, рибонуклеиновые кислоты (РНК). Рибосомы представляют собой мембранные структуры 16 X 18 нм, состоящие на 40% из белка и на 60% из РНК. Они являются центрами синтеза белка. Одним из доказательств этого служит концентрация антибиотика хлорамфеннкола на рибосомах. Механизм действия хлорамфеннкола на бактерии состоит в подавлении синтеза белка в бактериальных клетках, чувствительных к этому антибиотику. Бактериальная клетка содержит около 10 000 рибосомальных частиц. Матричная и транспортная РНК участвуют в синтезе белков. Ферменты катализируют реакции синтеза и распада. При обработке лизоцимом бактериальных клеток протопласт приобретает сферическую форму и сохраняет жизнеспособность. В протопластах происходят важнейшие биохимические процессы биосинтез белка и нуклеиновых кислот, [c.26]

    Разработаны химические методы определения величины полинептидных цепей белковой молекулы. Эти методы основаны на использовании особого реагента (динитрофторбензола), который соединяется со свободной а-амино-грунной аминокислотного остатка, стоящего на конце нолипептидной цепи, с образованием окрашенного комплекса этот комплекс можно выделить и идентифицировать после того, как белок подвергнется гидролизу на составляющие его аминокислоты (в том числе и на конечную аминокислоту с присоединенной к ней окрашенной группой). Так, лизоцим, белок, содержащийся в слезах и яичном белке и обладающий свойством уничтожать бактерии, имеет, как было установлено ири помощи ультрацентрифуги, молекулярный вес около 14 ООО и состоит примерно из 125 аминокислотных остатков. Применение описанного метода позволило показать, что имеется лишь одна свободная а-аминогруппа, и на этом основании был сделан вывод, что данная молекула состоит из одной нолипептидной цепи. Если эта полипептид-ная цепь была бы растянута, то ее длина составляла бы около 450 А. Однако, как установлено при помощи ультрацентрифуги, дифракцией рентгеновских лучей и другими методами исследования, молекула лизоцима по форме близка к шару с диаметром около 25 А. Отсюда следует, что нолипептидная цепь не может быть вытянутой, а должна быть скрученной, ибо только тогда молекула приобретет сферическую форму. [c.487]

    Сферические или шаровидные бактерии называются кокками (от греч. o us — ягода). В зависимости от расположения клеток после деления бактерий различают 1) моно- или микрококки — располагаются одиноч- но 2) диплококки— располагаются попарно, так как деление клетки происходит в одной плоскости 3) стрептококки — делятся в одной плоскости, но особи не отдеру, ляются друг от друга и образуют длинные цепочки 4) те-jS тракокки — образуют группы из четырех клеток, что к обусловлено делением клетки в двух взаимно перпенди- кулярных плоскостях 5) сарцины — образуют скопления -i. кубической формы в результате деления в трех взаимно [c.27]

    Число растворенных молекул, содержащихся в самых мелких из известных клеток. Самыми мелкими из всех известных клеток являются микоплазмы-сферические клетки с диаметром около 0,33 мкм. Малые размеры позволяют микоплазмам легко проходить через фильтры, задерживающие более крупные бактерии. Один из видов микоплазм My oplasma pneumoniae, может вызывать первичную атипичную пневмонию. [c.53]

    Ранее считалось, что вероятность повреждений бактериальных клеток определяется скоростью вращения лопастей мешалки. Однако, согласно наиболее правдоподобной современной гипотезе о механизме повреждений, они обусловлены кавитационными явлениями в вихрях, возникающих сразу за лопастями мешалок. Вопрос о повреждении бактериальных клеток в интенсивно перемешиваемых культурах все еще не решен. Если анализировать свойства суспензий бактериальных клеток в потоке, используя для определения гидродинамических характеристик любой отдельной бактериальной клетки предположение,, что она представляет собой сферическую частицу соответствующего диаметра, то оценить силы, вызывающие механическое повреждение клетки, не удается. Подобный подход не учитывает наличие жгутиков или фимбрий они — особенно это касается жгутиков — могут в несколько раз превосходить по длине самые крупные несущие их бактериальные клетки. Вполне возможно, что именно разрыв этих структур и последующее вытекание клеточного содержимого ответственны за разрушение клеток при интенсивном перемешивании бактериальных культур. Заметим, что значительная часть исследований по генетической инженерии направлена на осуществление передачи специфических свойств от различных бактерий к Es heri hia olij которая не особенно пригодна для использования ее в процессах с интенсивным перемешиванием именно из-за наличия фимрий и жгутиков и, следовательно, подверженности механическим повреждениям. [c.415]

    По форме, за немногими исключениями, все бактерии можно отнести к сферическим, цилиндрическим (палочковидным) или искривленным цилиндрическим. Основными формами считаются поэтому кокки, прямые палочки и изогнутые палочки (рис. 2.6). Как прямые палочки под микроскопом выглядят бактерии, относящиеся к родам Pseudomonas и Ba illus. Спириллы имеют штопорообразную форму. Вибрионами (Vibrio) называют искривленную палочку. Для некоторых бактерий характерны отклонения от этих основных форм. Для рода [c.29]

    Еще один класс РНК мы встречаем у вирусов. В мелких сферических вирусах бактерий и растений (таких, как вирусы f2 и MS2 Е. oli или вирус желтой мозаики турнепса) содержится РНК с молекулярным весом от 1 10 до 2-10 небольшие палочковидные вирусы, вроде вируса табачной мозаики, содержат РНК приблизительно такого же молекулярного веса, и, наконец, в крупных вирусах животных (пример — вирус ньюкастльской болезни) присутствует более высокомолекулярная РНК. [c.154]

    У бактерий и сине-зеленых водорослей структуры, ответственные за фотосинтез, по-видимому, устроены несколько проще. Из этих клеток можно получить интенсивно окрашенные частицы (так называемые хро-матофоры) приблизительно сферической формы, диаметром около 300 А. [c.317]

    Виды Rhizobium заражают корни бобовых и вызывают образование клубеньков, внутри которых они развиваются как внутриклеточные симбионты и фиксируют атмосферный азот. Клетки бактерий проникают в корневые волоски бобовых и передвигаются внутрь корня по специальной трубочке, инфекционной нити . Эта нить, как считают, образуется за счет инвагинации клеточной мембраны, откуда она продолжается до кортекса корня. Здесь ризобактерии заражают клетки и стимулируют их деление для образования молодых клубеньков. Когда-то считалось, что инвазия имеет место только в тетраплоидных клетках, но некоторые данные позволяют думать, что это не единственный случай [551]. Деление происходит также в клетках перед проникновением инфекционной нити. В молодых клубеньках бактерии выглядят преимущественно как палочки, но позднее образуют различные формы, становясь сферическими, ветвистыми или булавообразными такие формы известны как бактероиды [552]. Эти бактероиды собираются в группы и окружаются мембраной хозяина, образуя клубенек. Когда клубеньки образованы большим числом специфических ризо-бактерий, присутствующих в растении-хозяине, происходит деформация корневых волосков с их последующим ветвлением , или завиванием [553]. [c.277]

    Бактерии метанового брожения обнаруживаются в природе присутствие их неизбежно связано с гниением и разложением веществ. В изолированном виде они обнаруживают ро1ст смещан-ных бактерий в виде палочек, сферических или кокковых форм. [c.478]


Смотреть страницы где упоминается термин Сферические бактерии: [c.53]    [c.29]    [c.123]    [c.26]    [c.36]    [c.70]    [c.172]    [c.620]    [c.8]    [c.41]    [c.200]    [c.8]    [c.149]    [c.9]    [c.21]    [c.31]    [c.57]    [c.141]    [c.132]    [c.76]    [c.369]   
Общая микробиология (1987) -- [ c.29 ]




ПОИСК







© 2025 chem21.info Реклама на сайте