Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Образование хлорофилла в растениях

    Железо. Без Ге в листьях не образуется хлорофилл, они заболевают хлорозом. При недостатке железа уменьшается образование этого пигмента и падает интенсивность зеленой окраски. Однако железо не входит в хлорофилл. Долгое время роль его в синтезе этого вещества признавалась косвенной. Полагали, что железо регулирует течение окислительно-восстано-вительных процессов в синтезе хлорофилла. Недавно в эти представления внесена ясность. Оказалось, что ферменты, принимающие участие в образовании хлорофилла, содержат железо. Известна цитохромная система их, ускоряющая реакции окислительного фосфорилирования. В ее составе имеются железо-порфирины, которые переносят электроны при окислении и восстановлении. Принимая электрон, трехвалентное железо превращается в двухвалентное отдавая электрон, двухвалентное железо переходит в трехвалентное. Недостаток железа задерживает и синтез ауксинов в растении. [c.312]


    Происхождение нефти. О происхождении нефти нет единого мнения. Одна группа ученых, к которой принадлежал Д. И. Менделеев, предполагала, что нефть имеет неорганическое происхождение она возникла при действии воды на карбиды металлов. Другие ученые, например Энглер, считали, что нефть имеет органическое происхождение, т. е. образовалась в результате] медленного разложения различных остатков отмерших животных и растений при недостаточном доступе воздуха. Б последующие годы в многочисленных образцах нефти были обнаружены различные порфирины — соединения, образующиеся при разложении зеленого вещества растений — хлорофилла и красящего вещества крови — гемоглобина. Это доказывает участие в образовании нефти растений и животных. [c.78]

    Конечные этапы образования хлорофилла растениями, зеленеющими в полной темноте, не известны. У высших растений особенно интересно образование хлорофилла в семядоле неосвещенных проростков хвойных показано, что в данном случае гаплоидная ткань семени, развивающегося из мегаспоры, продуцирует какой-то фактор, способствующий появлению зеленой окраски. [c.453]

    В отсутствие некоторых питательных элементов растения делаются хлоротичными , т. е. бедными но содержанию хлорофилла. К таким элементам относятся калий, азот и магний, а также тяжелые металлы — железо и марганец. Эти явления упоминались в главе ХП при обсуждении торможения и стимуляции фотосинтеза неорганическими ионами. Там указывалось, что недостаток в минеральном питании может вызывать и прямое и косвенное угнетения фотосинтеза. Первое исчезает немедленно по добавлении дефицитного элемента, тогда как второе, связанное с хлорозом, может излечиваться более медленно при повышении образования хлорофилла, а также и других каталитических компонентов, которых недостает в фотосинтетическом аппарате хлоротичных растений. [c.431]

    Цинк крайне необходим для жизнедеятельности растений. При недостатке цинка в растениях нарушаются функции окислительных ферментов, обмен углеводов и белков, уменьшается образование хлорофилла, растения заболевают. Применение цинковых микроудобрений в виде подкормки устраняет эти нарушения, благоприятно действуя на рост и развитие растений (рис. 100). [c.384]

    Было показано, что изменение интенсивности зеленой окраски растений при меняющихся условиях азотного питания обусловлено различным содержанием в них хлорофилла. С первого взгляда это кажется несколько странным. При содержании хлорофилла в зеленых листьях около 1% в пересчете на сухой вес и азота в хлорофилле около 6,2% общее количество азота хлорофилла составляет около 0,06%, в го время как общее содержание азота в зеленых листьях около 3% (в пересчете на сухой вес). Таким образом, азот хлорофилла составляет всего лишь /зо долю общего азота листьев. Поэтому, казалось бы, что для образования хлорофилла растения могли бы довольствоваться весьма умеренным количеством азота, и в этом отношении они могли бы быть менее зависимыми от интенсивности снабжения их азотом. В действительности же дело обстоит совершенно по-другому. [c.157]


    Растения тоже нуждаются в железе. Железо входит в состав растительного фермента, принимающего участие в образовании хлорофилла-зеленого пигмента, без которого не может осуществляться фотосинтез. При нехватке железа у растений разви- [c.376]

    Несмотря на чрезвычайно малое содержание микроэлементов в растениях, роль их очень велика при достаточном наличии микроудобрений образование хлорофилла повышается, интенсивность фотосинтеза возрастает, деятельность ферментативного комплекса усиливается, дыхание растений улучшается, восприимчивость растений к заболеваниям понижается. Все это приводит к повышению урожайности. [c.423]

    Это прежде всего порфирины, состоящие из четырех пирроль-ных колец, образующих через атом азота комплексные соединения с металлами (обычно с V и N1). Их образование из хлорофилла растений не вызывает сомнений  [c.44]

    В какой форме указанные элементы, в том числе металлы, находятся в нефти, не установлено. Предполагают, что ванадий содержится в составе порфиринового ядра или в виде комплексов с пор-фирином. По другим взглядам, происхождение ванадия в нефтях вторичное и объясняется приносом его в виде сульфидов из окружающих пород [74]. Количество ванадия в нефти пропорционально содержанию в ней смол, особенно много его в асфальтах, что делает вероятным предположение о непосредственной связи ванадия с асфальтенами [124]. Магний, возможно, происходит из хлорофилла растений, из морских водорослей, послуживших материалом для образования нефти [74] допускается также содержание металлов в виде солей нафтеновых или минеральных кислот [72]. Многие металлы, очевидно, не обнаружены в золах нефтей вследствие летучести их соединений и потери при озолении. [c.51]

    Рассмотрим теперь некоторые закономерности распределения изопреноидов в парафинистых нефтях (рис. 56). Уже в первых работах, посвященных выделению изопреноидных углеводородов из различных природных соединений, были высказаны предположения, что основным источником образования этих соединений является непредельный алифатический спирт — фитол, входящий в состав хлорофилла растений [25, 28, 33, 39]. И действительно, диаграмма распределения изопреноидных углеводородов, представленная на рис. 56, достаточно убедительно свидетельствует в пользу такого предположения. [c.209]

    На примере изучения некоторых физиологических функций (транспирация, образование хлорофилла, содержание свободных аминокислот) мы попытались установить общее и специфическое в действии гербицидов. Работа проводилась в 1960— 1961 гг. в лаборатории физиологии растений Академии наук Таджикской ССР. В опыт были включены хлопчатник (108-ф), весьма чувствительный к гербицидам, и кукуруза (ВИР 42), которая сравнительно устойчива к ним. [c.8]

    Коф Э. М. 1970. Действие метаболических ингибиторов на процессы образования хлорофилла и флавоноидных ингибиторов роста при зеленении растений.— Докл. АН СССР, 192, 676. [c.223]

    Магний входит в состав хлорофилла, усиливает синтез белков, углеводов, липидов и других веществ. Железо участвует в образовании хлорофилла, а также содержится в ряде дыхательных ферментов. Микроэлементы (например, молибден, марганец, медь) играют очень важную роль в жизни растений, так как входят в состав ферментов, катализирующих многие процессы обмена веществ. [c.9]

    Железо играет роль катализатора при образовании хлорофилла и участвует в дыхании растений, входя в состав ферментов, регулирующих окислительно-восстановительные процессы. Ввиду достаточного содержания железа в почвах соли железа в качестве удобрений используются лишь в исключительных случаях (при чрезмерном содержании в почве извести). [c.21]

    Железный купорос, являющийся контактным ядом, используют в сельском хозяйстве для борьбы с вредителями садов и слизнями. Его применяют также для уничтожения мхов, лишайников и грибных спор, которые он убивает уже при концентрации О,.14%. По своим фунгицидным свойствам железный купорос в 10 раз слабее медного купороса S3 Железный купорос используют и для питания растений. Железо необходимо растениям как катализатор для образования хлорофилла. При недостатке железа растения заболевают хлорозом, и листья теряют зеленую окраску. Помимо этого, железо входит в состав многих окислительных ферментов и играет большую роль в дыхании растений. [c.699]

    Железо необходимо растениям (для образования хлорофилла) и животным, так как гемоглобин представляет собой органическое соединение железа. [c.687]

    Рассмотрим теперь некоторые закономерности распределения изопреноядов в нефтях типа А (см. рис. 21). Уже в ранних работах, посвященных определению изопреноидных соединений в каус-тобиолитах, были высказаны предположения о том, что основным, источником образования этих соединений является непредельный алифатический спирт фитол, входящий, как известно, в состав хлорофилла растений. И действительно, диаграмма распределения изопреноидных углеводородов, представленная на рис. 21, достаточно убедительно свидетельствует в пользу такого предложения  [c.63]


    ЦЙНКОВЫЕ УДОБРЕНИЯ, один из ввдов микроудобрений, содержащий в качестве микроэлемента Zn. Последний -постоянный компонент растений (15-22 мг на 1 кг сухого в-ва), входит в состав ряда ферментов, участвующих в окислит.-восстановит. процессах в растит, организмах, способствует биосинтезу витаминов, ускоряет рост и развитие, повышает продуктивность с.-х. культур. При недостатке Zn в растениях нарушается обмен в-в, уменьшается содержание сахарозы и крахмала, развивается хлороз листьев (приобретают желтую окраску), что замедляет образование хлорофилла и снижает активность фотосинтеза. [c.382]

    Фосфор — один из важных элементов для живых организмов. Тело человека в среднем возрасте содержит около 1600 г фосфора в пересчете на оксид фосфора РаОв, в том числе около 1400 г в костях, 130 г в тканях мышц, 12 г в мозге, 10 г в печени, 6 г в легких, 44 г в крови. Без фосфора невозможно образование хлорофилла и усвоение растениями углекислого газа. Признаки недостатка фосфора в растениях темно-зеленая, голубоватая, тусклая окраска листьев с появлением при отмирании черных пятен, задержка фаз развития растений (цветения и созревания), угнетенный рост, утолщение клеточных стенок. Поэтому фосфор входит в состав ферментов, витаминов, внесение фосфорных удобрений в почву не только повышает урожай, но и улучшает качество продуктов. Начало промышленному производству фосфорных удобрений положено работами Ю, Либиха. Он предложил превращать нерастворимый в воде фосфат кальция действием серной кислоты в водорастворимый, легкоусвояемый растениями дигидрофосфат кальция. Первоначально сырьем для его получения служили кости животных, но уже в 1857 г. Ю. Либих показал, что столь же хорошее удобрение получается при обработке серной кислотой минеральных фосфатов. [c.161]

    Железо — второй по распространенности в природе металл, после алюминия. Промышленное значение в качестве железных руд имеют главным образом красный железняк РегОз и магнитный железняк Рез04. По запасу железных руд наша страна занимает первое место в мире. Они залегают на Урале, в Курской области, в Криворожье и в других местах. Железо входит в состав растительных и животных организмов. Оно содержится в гемоглобине крови, переносящем кислород из легких в ткани, и необходимо для образования в растениях хлорофилла, хотя в состав его не входит. При недостатке железа в почве растения перестают образовывать хлорофилл и утрачивают зеленую окраску. [c.157]

    ЖЕЛЕЗНЫЕ УДОБРЕНИЯ, однн нз видов мнкроудобре-ннй, содержащий в качестве микроэлемента Fe-незаменимый элемент питания, необходимый растениям в течение всей жизни. Fe входнт в состав мн, ферментов, участвующих в окислит.-восстановит. процессах в растит, организмах, способствует образованию хлорофилла. Прн недостатке Fe развивается хлороз листьев (приобретают желтую окраску), что резко замедляет рост растений, снижает их урожаи, а иногда приводит к гибели. [c.139]

    ФОТОСЙНТЕЗ, образование зелеными растениями и нек-рыми бактериями орг. в-в с использованием энергии солнечного света. Происходит при участии пигментов (у растений хлорофиллов). В основе Ф. лежат окислит.-восстановит. р-ции, в к-рых электроны переносятся от донора (напр., Н2О, H2S) к акцептору (СО2) с образованием восстановленных соед. (углеводов) и выделением Oj (если донор электронов Н2О), S (если донор электронов, напр., H2S) и др. [c.175]

    Эффективная гербицидная активность по отношению к двудольным сорным растениям обнаружена у б-аминолевулиновой (5-амино-4-оксопентановой) кислоты [40]. Действие этого гербицида проявляется при воздействии солнечного света и заключается в нарушении процесса образования хлорофилла у двудольных сорных растений, в результате чего они погибают в течение нескольких часов. Норма расхода препарата 0,22 кг/га. Вследствие высокой стоимости этой кислоты предложено использовать ее в смеси с 2,2 -дипиридилом в этом случае норма расхода препарата существенно уменьшается. [c.150]

    Фотосинтез — образование зелеными растениями, а также фотосинтезирующими микроорганизмами органических веществ клеток из неорганических при участии и за счет энергии солнечного света. Фотосинтез протекаёт с участием поглощающих сеет пигментов, прежде всего хлорофилла. Первыми стабильными продуктами фотосинтеза являются НАД(ф)Н и АТФ. Далее они используются при ассимиляции СО2 и в других биосинтетических процессах. У вьюших растений донором электронов является нр. При этом фотосинтез сопровождается выделением О2. Суммарный процесс фотосинтеза выражается уравнением [c.333]

    Синтез хлорофилла у растений складывается из нескольких этапов, которые в свою очередь состоят из ряда последовательных реакций. Из низкомолекулярных соединений (а-атомов уксусной кислоты и глицина) образуются структурные единицы— пиррольные кольца, которые затем участвуют в образовании тетрапиррола. В результате последовательных реакций образуется магний-винил-феопорфирин-протохлорофиллид, из которого посредством восстановления двойной связи в 4-м пир-рольном кольце образуется хлорофиллид, фитиловый эфир которого является хлорофиллом А. Окисление хлорофилла А приводит к образованию хлорофилла В. [c.226]

    Т. Н. Годнее. Хлорофилл, его строение и образование в растении. Минск, Изд-во АН БССР, 1965. [c.78]

    См. Г о д н е в Т. Н., Хлорофилл. Его строение и образование в растениях, Изд-во АН БССР, Минск, 1963.— Прим. ред. [c.258]

    Если в направлении изучения синтеза гема сложилось вполне отчетливое представление о его первоначальных этапах, то в отнощении хлорофилла таких сведений было немного. Поэтому при уточнении схемы биосинтеза хлорофилла в свете новых данных, полученных в результате применения изотопных индикаторов, советские физиологи Т. Н. Годнев и А. А. Шлык положили в основу первоначальных стадий схемы представление об аналогичных путях образования хлорофилла и гемоглобина. Закономерности, которые прослежены в последние годы относительно биосинтеза гема,—пишет Шлык,— могут служить основой для дальнейшего развития наших представлений о химизме формирования форбинного ядра молекулы хлорофилла в растении " . [c.191]

    Порфирины — одни из наиболее устойчивых в истории земли органических соединений. В ископаемых отложениях они сохранились, вероятно, как результат разрушения молекул хлорофилла растений или пигментов животного происхождения. Первые достоверные признаки существования биохромов живых существ относят к палеозойской эре. Палеохимические исследования показали, что в ряде ископаемых образований — нефти, каменном угле, асфальте, битумах и других — начиная с силурийских отложений, присутствуют порфирины как в свободном состоянии, так и в виде металлопорфиринов. [c.195]

    В итоге синтетически процессов, протекаюш их в зеленых частях растения при освеш,ении и пол гчивших название фотосинтеза, образуются наряду с углеводами и органические кислоты, аминокислоты и белки. Из минеральных элементов, кроме азо та и серы, входяш,их в аминокислоты (азот во все, сера в некоторые), уже в самом начале фотосинтеза потребляется фосфор, поскольку появляются фосфороглицериновая кислота и сахарофосфаты. Кроме того, хлорофилл Содержит магний (2,7%), который атомами азота связан, с четырьмя пирро льными ядрами. Наконец, калий выполняет важную функцию в передвижении углеводов из листовой пластинки в черешок и дальше по растению. [При недостатке калия эта функция нарушается, а другим катионом его заменить нельзя. При недостатке железа подавляется образование - хлорофилла.  [c.43]

    Из элементов подгруппы УПВ большая роль в физиологических процессах принадлежат марганцу. Сейчас установлено, что небольшие количества марганца есть во всех растительных и животных организмах. Марганец играет активную роль в обмене веществ. В растениях он ускоряет образование хлорофилла, а также же помогает им синтезировать витамин С. Внесение марганца в почву повышает урожайность многих культур, например озимой пшеницы и хлопчатника. Отсутствие марганца в пище животных сказывается на их росте и жизненном тонусе. Мыши, которых кормили только молоком (оно содержит очень мало марганца), теряли способность к размножению. Когда же к их пище добавили хлорид марганца, то эта способность восстановилась. Марганцу в организ.ме спойст-венно активно участвовать в процессе кроветворения и в обмене веществ. [c.360]

    A. Н. Теренина, А. А. Ерасновского, Т. Н. Годнева, А. А. Табенц-кого, Н. М. Сисакяна, О. П. Осиповой дали материалы решающего значения для познания природы пигментов хлоропластов, их оптических свойств, состояния в растениях, механизма участия в процессе фотосинтеза, химизма образования хлорофилла . [c.12]

    Калий. Калий — один из элементов, недостаток в котором отражается на растениях одним из следствий этого недостатка является хлороз (недостаточное образование хлорофилла) и в связи с этим пониженная скорость фотосинтеза. Кажется, однако, что, помимо этого косвенного влияния, калий оказывает также и прямое вдияние на фотосинтез . Внесение этого элемента в среду может вызывать немедленное возрастание скорости фотосинтеза. [c.344]

    Изложение современных взглядов на химизм образования хлорофилла см. в работе Т. Н. Годнева Строение хлорофилла и возможные пути его образования у растений. Изд. АН СССР, 1947. Прим. ред.) [c.406]

    В темноте проростки высших растений остаются бесцветными (этиолированными), но начинают зеленеть немедленно при перенесении их на свет. Это явление многократно изучалось, и нет никаких сомнений, что образование хлорофилла в растениях представляет собой фотохимическую реакцию. Но еще в 1885 г. Шимпер открыл, что низшие растения (вплоть до мхов) способны к синтезу хлорофилла в отсутствие света. Майерс [217] не обнаружил разницы в составе и фотосинтетической активности пигментов, образованных у Proto o eus и hlorella в темноте и на свету. Способность синтезировать хлорофилл в темноте распространяется и на хвойные, хотя свет ускоряет у них образование хлорофилла, что иллюстрируют данные. 1юбименко [166] (табл. 70). [c.433]

    Скорость образования хлорофилла зависит не только от интенсивности света, но и от его спектрального состава. Эмерсон и Арнольд [183] и Эмерсон, Грин и Вебб [207] пользовались светом различной окраски, вызывая рост клеток hlorella е различным содержанием хлорофилла. По данным ряда авторов [168, 194, 204, 208, 210], синтез хлорофилла на красном свету идет быстрее, чем на синем или зеленом той же интенсивности. Это явление заслуживает более тщательного изучения. Бодее высокая эффективность красного света может вызываться его поглощением предшественником хлорофилла или может бьШ результатом автосенсибилизиро-вания продуктом реакции (хлорофиллом). Джонстон [184] обнаружил меньше хлорофилла у растений, росших на красном свету . 1из и Тоттингем [198] отмечают, что образование хлорофи.1ла увеличивается при подмешивании к красному свету сине-фиолетового, [c.433]


Смотреть страницы где упоминается термин Образование хлорофилла в растениях: [c.129]    [c.114]    [c.73]    [c.215]    [c.409]    [c.166]    [c.187]    [c.187]    [c.67]    [c.11]    [c.343]    [c.441]    [c.226]   
Фотосинтез 1951 (1951) -- [ c.406 , c.407 , c.433 , c.435 ]




ПОИСК





Смотрите так же термины и статьи:

Хлорофилл

Хлорофилл образование

Хлорофилл хлорофилл



© 2025 chem21.info Реклама на сайте