Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Хлорофилл образование

    Важнейшее значение для питания растений имеют азот, фосфор и калий, от которых зависят обмен веществ в растении и его рост. Азот входит в состав белков и хлорофилла, принимает участие в фотосинтезе. Соединения фосфора играют важную роль в дыхании и размножении растений, участвуя в процессах превращения углеводов и азотсодержащих веществ. Калий регулирует жизненные процессы, происходящие в растении, улучшает водный режим, способствует обмену веществ и образованию углеводов в тканях растений. [c.240]


    Комплексные соединения широко распространены в природе, играют важную роль в биологических процессах. Достаточно упомянуть гемоглобин крови (комплексообразователь Ре +) и хлорофилл зеленых растений (комплексообразователь Mg + ), витамин В12 (комплексообразователь Со + ). Комплексные соединения и комп-лексообразование находят самое разнообразное практическое применение. Образование комплексов используется при умягчении жесткой воды и растворении камней в почках важнейшую роль играют комплексные соединения в химическом анализе, производстве металлов и т. д. [c.76]

    Действительно, общий цикл обмена веществом и энергией для живых организмов можно упрощенно представить как инициирующее этот цикл образование сложных молекул типа углеводов из СО2 и воды в ходе фотосинтеза растений с последующей деградацией продуктов фотосинтеза вновь до СО2 и воды в процессах дыхания в рассматриваемом организме. При этом уменьшение энтропии происходит только в момент электронного возбуждения молекулы хлорофилла за счет поглощения фотосинтезирующими организмами носителей чистой свободной энергии — квантов солнечного света, в результате чего становится возможным протекание первичных фотосинтетических реакций образования энергоемких веществ. Все происходящие далее биохимические процессы носят необратимый характер и идут только с увеличением [c.297]

    Эти два соединения, хлорофилл и гем, играют важнейшую роль в сложном механизме поглощения солнечной энергии и ее превращении для использования живыми организмами. Мы уже знаем, что характерным свойством комплексов переходных металлов является наличие нескольких близко расположенных -уровней, что позволяет им поглощать свет в видимой области спектра и придает окраску. Порфириновый цикл вокруг иона Mg в молекуле хлорофилла выполняет такую же роль. Хлорофилл в растениях поглощает фотоны видимого света и переходит в возбужденное электронное состояние (рис. 20-22). Эта энергия возбуждения может инициировать цепь химических реакций, приводящих в конце концов к образованию сахаров из диоксида углерода и воды  [c.255]

    Фотохимические реакции весьма распространены. Достаточно указать на так называемую реакцию фотосинтеза, протекающую в растениях при участии зеленого пигмента — хлорофилла — при поглощении солнечной радиации. Фотосинтез сводится к ассимиляции оксида углерода (IV) с образованием углеводов и выделением кислорода. Это многостадийный процесс, суммарное уравнение которого можно записать в виде [c.269]


    Гидролиз живой протоплазмы и структуры клеток, разрушение хлоропластов и хлорофилла, образование антоциана и отток наиболее ценных продуктов распада, органических кислот, а также витаминов из листьев — в плоды, из плодов — в семена [24—28]. [c.12]

    Важную роль линейные тетрапирролы играют в растениях, где образуют комплексы с белками, называемые фитохромами. В составе фитохрома тетрапиррол может находиться в двух взаимопревращающихся конформациях, которым соответствуют формы фитохрома Р и Ргг- Впервой тетрапиррол имеет стереохимию 722-формы, в которой все меж-пиррольные связи представлены 2-изомерами. При освещении видимым светом одна из связей переходит в /и/ анс-положение (Е22-форма). Данный переход сопровождается изменением конформации связанного с тетрапирролом белка, что, в свою очередь, инициирует в растении ряд светозависимых процессов синтез хлорофилла, образование и развитие листьев и т. д. (совокупность этих явлений называется фотоморфогенезом)  [c.227]

    Один из доводов, выдвигаемых против теории о глубинном происхождении УВ, заключается в том, что в нефтях встречаются соединения, которые могли образоваться только из хлорофилла. На этом основании делается заключение об образовании нефти только из организмов и при этом только из хлорофиллоносных. Споры растений, обнаруженные в нефтях, также должны свидетельствовать о формировании последних из остатков растений. Но эти свидетельства о биогенном происхождении нефтей можно объяснить тем, что в осадочных толщах до проникновения в них нефтей глубинного происхождения находились и споры, и пыльца растений, и хлорофилл, и другие остатки организмов, которые могли [c.23]

    В образовании адсорбционных слоев принимают участие вещества V с высокой поверхностной активностью, такие как нафтенаты и соеди- нения типа порфиринов. Порфирины и металл-порфириновые комплексы (остатки хлорофилла и гематина [30]) обнаружены во многих нефтях. Из металл-порфириновых соединений в нефтях наиболее [c.19]

    Хроматографическое разделение пигментов зеленых листьев растений состоит из следующих этапов 1) экстрагирование пигментов из растительного материала 2) образование хроматограмм 3) получение растворов хлорофилла-а, хлорофилла-р и каротиноидов. [c.296]

    Хроматография. Цвет установил, что при пропускании через столбик адсорбента экстрактов хлорофилла наблюдается образование окрашенных зон на адсорбенте, и показал возможность разделения смесей органических веществ. Поэтому свой метод Цвет и назвал адсорбционной хроматографией, т. е. разделением веществ на твердых адсорбентах по окраске. В настоящее время этот метод применяется при разделении самых разнообразных смесей, и чаще всего неокрашенных, но термин хроматография все же сохранился. [c.58]

    Фотосинтез— один из важнейших процессов в биосфере продуктом его являются практически все природные органические соединения. Под действием света, поглощаемого пигментом зеленых растений хлорофиллом, происходит в конечном итоге образование глюкозы СвН 20д и кислорода из диоксида углерода и воды. Согласно полному уравнению фотосинтеза [c.32]

    После завершения этих реакций наступает темновая стадия процесса фотосинтеза, сущность которой состоит в передаче водорода молекулой восстановленного хлорофилла молекуле СО2 с образованием органических соединений типа углеводов. Этот процесс совершается под действием соответствующих ферментов по схеме [c.178]

    Растения тоже нуждаются в железе. Железо входит в состав растительного фермента, принимающего участие в образовании хлорофилла-зеленого пигмента, без которого не может осуществляться фотосинтез. При нехватке железа у растений разви- [c.376]

    В данной главе мы бросили беглый взгляд не некоторые важнейшие составляющие биосферы-той части физического мира, в которой протекают жизненные циклы организмов. Наряду с соответствующими условиями окружающей среды для поддержания жизни необходим какой-либо источник энергии. Первичным источником необходимой энергии является Солнце. В процессе фотосинтеза растения превращают солнечную энергию в химическую. Солнечная энергия поглощается растительным пигментом хлорофиллом и затем используется для образования углевода глюкозы и О2 из СО2 и Н2О. [c.464]

    Действительный механизм фотосинтеза чрезвычайно сложен, Протекает процесс только в присутствии хлорофилла, который поглощает красные, синие и в меньшей степени зеленые лучи. Активированный таким образом хлорофилл содействует образованию из диоксида углерода и воды углеводов, необходимых для роста растений, и кислорода. Хлорофилл переводит лучистую энергию в химическую, т. е. является фотосенсибилизатором. [c.291]

    Магний. Существенное влияние на повышение урожайности оказывает внесение магниевых удобрений. Магний входит в состав хлорофилла. Он способствует протеканию восстановительных процессов, образованию углеводов и переводу фосфора из минеральных в органические соединения. [c.235]


    К фотохимическим относятся реакции, протекающие под действием квантов света. Такие реакции многочисленны, а некоторые из них имеют жизненно важное значение. Фотохимическими являются реакции выделения кислорода и ассимиляции диоксида углерода в процессе фотосинтеза, образование озона из кислорода под действием ультрафиолетового излучения Солнца, природный синтез хлорофилла и т. п. Фотохимическое разложение бромистого серебра лежит в основе фотографического процесса. С фотохимическими реакциями связано явление люминесценции, выцветание красок и т. п. [c.200]

    Как уже упоминалось, сомнительно, чтобы большинство элементов входило в первичные соединения нефти. Однако ванадий, медь, никель и отчасти железо образуют особую группу. Эти металлы способны давать комплексы с ниррольными пигментами, происходящими из хлорофилла и гемоглобина, с образованием устойчивых соединений, растворимых в нефти, [c.45]

    За счет поглощаемой энергии солнечного света проходит важнейший на нашей планете фотохимический процесс — синтез углеводов и образование молекулярного кислорода из СО и HjO. Свет поглощается специальным пигментом — хлорофиллом. Последний переходит в электронно возбужденное состояние и отдает свой электрон, который с помощью сложной цепочки биохимических превращений восстанавливает СО j  [c.288]

    За счет поглощаемой энергии солнечного света проходит важнейший на нашей планете фотохимический процесс — синтез углеводов и образование молекулярного кислорода из СОа и НгО. Свет поглощается специальным пигментом — хлорофиллом, который переходит в электронно-возбужденное состояние, и с этого начинается цепочка реакций, приводящая в конечном итоге к восстановлению углекислого газа до глюкозы. Суммарное уравнение реакции можно записать в виде [c.370]

    Для образования одной молекулы глюкозы, согласно этому уравнению, 24 раза должно произойти поглощение света хлорофиллом, и каждый раз хлорофилл отдает свой возбужденный электрон на восстановление СОг. Отдав свой электрон, хлорофилл приобретает свойства окислителя и стремится получить электрон обратно. Получает он электрон от молекулы воды с помощью сложной цепочки реакций, рассматриваемых в специальных курсах биохимии. Итоговое уравнение этой цепочки можно записать [c.370]

    Несмотря на чрезвычайно малое содержание микроэлементов в растениях, роль их очень велика при достаточном наличии микроудобрений образование хлорофилла повышается, интенсивность фотосинтеза возрастает, деятельность ферментативного комплекса усиливается, дыхание растений улучшается, восприимчивость растений к заболеваниям понижается. Все это приводит к повышению урожайности. [c.423]

    Дальнейшее изучение явлений наследственности привело к необходимости установить не только механизм передачи геиов хромосом от одного поколения организмов другому, но и то, как эти гены контролируют процессы клеточного метаболизма и развитие определенных признаков и свойств. Поэтому клетку стали рассматривать как единую целостную систему, определяющую передачу и воспроизведение признаков в потомстве в результате взаимодействия компонентов ядра (генов хромосом) и цитоплазмы, что можно показать на примере приобретения ею способности к фотосинтезу. Фотосинтез связан с цитоплазматическими структурами клетки —пластидами и находящимся в них пигментом хлорофиллом. Образование и функции пластид обусловливаются наследственными факторами и действием внешних условий (главным образом света, без которого хлорофилл в пластидах не образуется). Мутации в некоторых локусах хромосом могут частично или полностью нарушать процесс образования пластид и содержаще гося в них хлорофилла. Эти так называемые хлорофильные мута ции наследуются, строго подчиняясь закономерностям Г. Менделя Но аномальные (белые) пластиды могут образовываться в клет ках, имеющих нормальный набор генов, и при хорошем освещении Этот признак не наследуется по правилам Г. Менделя. При делении клетки, содержащей указанные аномальные пластиды, обра- [c.114]

    Образование хлорофилла представляет собой фотохимическое восстановление прото-хлорофнллида, который мон<е.т сннтезцроваться без света хлорофиллид— -хлорофилл. Образование тилакоидов фотосинтетических мембран связано, по-видимо-му, со специфической РНК и ферментными белками. Увеличение размеров пластид коррелирует с накоплением в них белка. Самообразования инициальных частиц никогда не наблюдается Пластиды размножаются делением или почкованием после их дифференциации поперечные перегородки или почки образуются из складок внутренних мембран пластид. [c.156]

    Рассмотрим теперь некоторые закономерности распределения изопреноядов в нефтях типа А (см. рис. 21). Уже в ранних работах, посвященных определению изопреноидных соединений в каус-тобиолитах, были высказаны предположения о том, что основным, источником образования этих соединений является непредельный алифатический спирт фитол, входящий, как известно, в состав хлорофилла растений. И действительно, диаграмма распределения изопреноидных углеводородов, представленная на рис. 21, достаточно убедительно свидетельствует в пользу такого предложения  [c.63]

    Изучение микроэлементов нефти представляет особый интерес для представления о ее генезисе. Порфирины принято считать реликтовыми компонентами, которые перешли в нефть из растительных и животных организмов в малоизмененном виде. Известно, что комплексы, подобные порфирииовым, входят в состав молекул таких биологических вещесгв, как хлорофилл и гем. Правда, в состав комплексов этих соединений входят пе никель и ванадий, а магний и железо. Поэтом считают, что ванадий и никель имеют вторичное происхождение, но они вошли в состав нефти на ранних стадиях ее образования — на стадии донных илов или перехода в нефть материнского вещества. [c.222]

    На рис. 12 приведена предполагаемая схема термокаталитической деструкции фитола С20Н39ОН с образованием алканов изо-преноидных структур (фитол, как известно, входит в состав хлорофилла). Закономерное- количественное распределение образовавшихся изопреноидов указывает на фитол, как на один из основных источников формирования алканов изопреноидноготипа, а следовательно на органический характер их происхождения в составе нефти. [c.186]

    ФОТОСИНТЕЗ — синтез растениями органических веществ (углеводов, белков, жиров) из диоксида углерода, воды, азота, ( юсфора, минеральных солей и других компонентов с помощью солнечной энергии, поглощаемой пигментом хлорофиллом. Ф.— основной процесс образования органических веществ на Земле, определяющий круговорот углерода, кислорода и других элементов, а также основной механизм трансформации солнечной энергии на нашей планете. В процессе Ф, растения усваивают вгод4 101 туглерода, разлагают 1,2 х X 10 т воды, выделяют 1 10 т кислорода и запасают 4-102° кал солнечной энергии в виде химической энергии продуктов Ф. Это количество энергии намного превышает годовую потребность человечества в ней. Ф.—сложный окис-лительно-восстановительный процесс, сочетающий фотохимические реакции с ферментативными. Вследствие Ф. происходит окисление воды с выделением молекулярного кислорода и восстановление диоксида углерода, что выражается [c.268]

    Крахмал. Крахмал является важнейшим резервным углеводом растений. Он образуется из углекислоты, усваиваемой растениями с помощью хлорофилла, и попадает затем в различные части растения, где используется в качестве строительного вещества. В периоды сильной ассимиляции он откладывается в корнях, клубнях и семенах (особенно обильно, например, в картофеле и семенах хлебных злаков). В холодной воде крахмал почти совсем не растворим, но горячая вода растворяет его в значительной степени, причем образуется вязкий раствор, не восстанавливающий фелингову жидкость и при охлаждении застывающий в студнеобразную массу (крахмальный клейстер). Природный крахмал всегда содержит немного фосфора, количество которого в разных видах бывает различным (0,02—0,16%). Этот фосфор, по-видимому, имеет значение для энзиматического распада крахмала. Из продуктов гидролиза картофельного крахмала была выделена глюкозо-6-фосфорная кислота. На основании исследований Макэнна различают две фракции крахмала амилозу и а м и л о-пектин (вещество оболочки). Первая растворяется в воде без образования клейстера и окрашивается иодом в чисто-синий цвет. Амило-пектин, наоборот, с горячей водой образует клейстер и от иода приобретает фиолетовую окраску. Отделение амилопектина может быть осуществлено путем извлечения щелочами или посредством электродиализа отделение амилозы достигается осаждением различными органическими веществами — спиртами (например, амиловым), сложными эфирами, кетонами, меркаптанами, парафинами. [c.454]

    Процессы фотосинтеза весьма детально изучаются в течение ряда лет, однако они еще ни в коей мере не могут считаться окончательно выясненными. В особенности спорной является первая стадия фотосинтеза— образование восстанавливающего первичного продукта под действием света. Мы знаем, что для этого необходимы зеленые красители листьев —хлорофилл а и в некоторых ассимилирующих бактериях соответствуюн1ую роль играет бактериальный хлорофилл . Возможно, что для процессов ассимиляции необходимы также другие пигменты так, неоднократно высказывалось мнение, что в процессах ассимиляции принимает участие -каротин. [c.983]

    Опыт показывает, что иногда фотохимические процессы осуществляются под действием излучения, хотя оно совершенно не поглощается реагирующими веществами. Казалось бы, в данном случае имеет место отступление от закона Гроттуса. Однако исследования показали, что эти реакции происходят только тогда, когда п реагирующим веществам примешиваются некоторые посторонние примеси, которые, поглощая световую энергию, передают ее затем реагирующим веществам. Эти примесные вещества получили лазванпе сенсибилизаторов. Механизм действия сенсибилизаторов состоит в том, что молекула сенсибилизатора при поглощении фотона переходит в возбужденное состояние, а затем, столкнувшись с молекулой реагирующего вещества, передает ей избыток своей энергии, вызывая тем самым химическое превращение. Примеров сенсибилизированных реакций можно привести очень много. Так, путем добавления к фотоэмульсии некоторых веществ, выполняющих роль сенсибилизатора, можно значительно повысить ее чувствительность к красным лучам света. Известный всем хлорофилл также является сенсибилизатором фотохимических реакций образования органических веществ в зеленых растениях. [c.175]

    Обратите внимание на то, что для образования одного моля сахара СбН120б должно быть поглощено и использовано 48 молей фотонов. Необходимая для этого энергия излучения поступает из видимой части солнечного спектра (см. рис. 5.3 ч. 1). Фотоны поглощаются фотосинтетическими пигментами в листьях растений. К важнейшим из этих пигментов относятся хлорофиллы структура наиболее распространенного хлорофилла, так называемого хлорофилла-а , показана на рис. 25.1. Хлорофилл представляет собой координационное соединение. Он содержит ион связанный с четырьмя атомами азота, которые расположены вокруг него по вершинам квадрата в одной плоскости с металлом. Атомы азота входят в состав порфиринового цикла (см. разд. 23.2). Следует обратить внимание на то, что в окружающем ион металла цикле имеется ряд двойных связей, чередующихся с простыми связями. Благодаря такой системе чередующихся, или сопряженных, двойных связей хлорофилл способен сильно поглощать видимый свет. На рис. 25.2 показано соотношение между спектром поглощения хлорофилла и спектральным распределением солнечной энергии у поверхности Земли. Зеленый цвет хлорофилла обусловлен тем, что он поглощает красный свет (максимум поглощения при 655 нм) и синий свет (максимум поглоще- [c.442]

    Согласно современным представлениям, фотохимическая стадия Ф. заключается в поглощении хлорофиллом кванта света с переходом хлорофилла в восстановленное состояние вследствие присоединения к нему электрона или водорода из какого-либо восстановителя. Восстановленный хлорофилл с помощью нескольких последовательно действующих ферментов передает электрон или водород, а тем самым и поглощенную энергию на восстановление углекислоты. Что касается химизма фотосинтетиче-ского превращения углерода, то согласно современному представлению первичная фиксация СО2 происходит на углеводе, содержащем пять атомов углерода,— рибулозодифосфате, который при этом распадается с образованием фосфоглицериновой кислоты. Последняя восстанавливается до фосфоглицериново-го альдегида, который конденсируется с фосфодиоксиацетоном и образует фруктозодифосфат, а затем свободные сахара — гексозы, сахарозы и крахмал — в процессе, обратном гликолитиче-скому распаду. Очень важно, что растения могут осуществлять Ф. не только при естественном солнечном свете, но и при искусственном освещении, что дает возможность выращивать растения в разное время года. [c.269]

    Еп образует один цикл, 2Еп—два, ЗЕп —три, а-хлорофилл — четыре, этилендиаминтетрауксусная кислота — пять циклов. Число циклов может быть и больше. Главную роль здесь играет дентат-ность лиганда. Важной характеристикой циклов является число его членов (число узловых атомов в цикле). Они бывают четырех-, пяти-, шести-,. ..членными. В соответствии с правилом образования циклов наиболее устойчивы пяти- и шестичленные циклы. Соединения с трех-, четырех-, семи- и восьмичленными циклами либо вообще не образуются, либо характеризуются сравнительно невысокой устойчивостью. Разрыв цикла при химических превращениях происходит по месту наименее прочной связи. Явле> [c.275]

    Фосфор — один из важных элементов для живых организмов. Тело человека в среднем возрасте содержит около 1600 г фосфора в пересчете на оксид фосфора РаОв, в том числе около 1400 г в костях, 130 г в тканях мышц, 12 г в мозге, 10 г в печени, 6 г в легких, 44 г в крови. Без фосфора невозможно образование хлорофилла и усвоение растениями углекислого газа. Признаки недостатка фосфора в растениях темно-зеленая, голубоватая, тусклая окраска листьев с появлением при отмирании черных пятен, задержка фаз развития растений (цветения и созревания), угнетенный рост, утолщение клеточных стенок. Поэтому фосфор входит в состав ферментов, витаминов, внесение фосфорных удобрений в почву не только повышает урожай, но и улучшает качество продуктов. Начало промышленному производству фосфорных удобрений положено работами Ю, Либиха. Он предложил превращать нерастворимый в воде фосфат кальция действием серной кислоты в водорастворимый, легкоусвояемый растениями дигидрофосфат кальция. Первоначально сырьем для его получения служили кости животных, но уже в 1857 г. Ю. Либих показал, что столь же хорошее удобрение получается при обработке серной кислотой минеральных фосфатов. [c.161]


Смотреть страницы где упоминается термин Хлорофилл образование: [c.253]    [c.54]    [c.97]    [c.157]    [c.160]    [c.178]    [c.195]    [c.981]    [c.270]    [c.223]    [c.28]    [c.160]   
Биохимия растений (1968) -- [ c.453 ]




ПОИСК





Смотрите так же термины и статьи:

Аденозилметионин образование хлорофилла

Водоросли образование хлорофилла в темноте

Марганец влияние на фотосинтез и образование хлорофилла

Образование хлорофилла в растениях

Образование хлорофилла в темноте

Образование хлорофилла, влияние

Образование хлорофилла, влияние внешних факторов

РНК рибосомная и образование хлорофилла

Фитохромы и образование хлорофилла

Хвойные, образование хлорофилла

Хвойные, образование хлорофилла в темноте

Хлорофилл

Хлорофилл катион, скорость образования в хлоропластах

Хлорофилл образование из глицина II схема

Хлорофилл образование на свету

Хлорофилл образование при зеленении

Хлорофилл реакция образования

Хлорофилл хлорофилл



© 2025 chem21.info Реклама на сайте