Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Поверхностные пленки на твердых

    Обширная монография, излагающая современное состояние вопросов, связанных с изучением физических и химических свойств поверхностей жидких и твёрдых тел, охватывает результаты ) теоретических и (главным образом) экспериментальных исследований капиллярных явлений, плёнок на поверхности, адсорбции, поверхностного натяжения, трения и смазки, катализа и электрических явлений на границах раздела. [c.2]


    Классификация методов измерения поверхностного натяжения. Существуют статические и динамические методы. Статические методы заключаются в измерении натяжения практически неподвижных поверхностей, образованных за некоторое время до начала измерения. В основе каждого статического метода лежит один из следующих двух принципов наиболее точные методы связаны с измерением разности давлений между вогнутой и выпуклой сторонами поверхности раздела, обладающей поверхностным натяжением (гл. 1, 10) и во многих случаях сводятся к измерению гидростатического давления у поверхности жидкости предписанной кривизны к числу этих методов относятся многочисленные варианты метода капиллярного поднятия, метод максимального давления пузырьков, метод счёта капель и метод неподвижных капель второй принцип, дающий менее точные результаты, но во многих случаях более удобный благодаря быстроте измерений, заключается в растяжении плёнки жидкости, временно прилипающей к твёрдой рамке к числу таких методов принадлежит метод отрыва кольца от поверхности жидкости и измерения поверхностного натяжения мыльных растворов путём растяжения мыльной плёнки. [c.466]

    Наконец, диффракция электронов также может быть использована для изучения поверхностных плёнок нелетучих соединений на таких жидкостях как ртуть, которые можно помещать в высокий вакуум. Впрочем, на жидкостях диффракция электронов, повидимому, мало применялась, хотя для твёрдых поверхностей она теперь является одним из основных экспериментальных методов. [c.44]

    Таким образом, каждая из двух твёрдых поверхностей даёт определённый эффект, независимо от того, какова природа второй поверхности и смазки. Одно время Гарди пытался объяснить это тем, что притяжение твёрдой поверхности действует на больших расстояниях, но позднейшие анализы явлений, связанных с процессом скольжения, показали, что этот процесс чрезвычайно сложен, и коэффициент трения, как правило, не может просто интерпретироваться с точки зрения непрерывных свойств поверхностных плёнок и твердых поверхностей. [c.302]

    Если давление круто падает до некоторого предельного значения площади, и в дальнейшем остаётся вполне или почти постоянным, плёнка может быть названа сплошной. В этом можно убедиться, передвигая воздушный электрод вдоль поверхности при площадях, несколько превышающих предельную, при этом всегда наблюдаются резкие колебания скачка потенциала, обусловленные переходами электрода от участков сплошной жидкой или твёрдой плёнки к участкам парообразной плёнки, и наоборот. При недостаточной чувствительности динамометра поверхностное давление парообразной плёнки может оказаться слишком низким для точного определения, и резкий излом кривой при переходе от области сплошной плёнки к области постоянного давления парообразной плёнки может на практике,ока заться несколько сглаженным. .  [c.56]


    Молекулы р-соединения выпрямляются при меньшем давлении, чем молекулы а-соединения. Разрушение плёнки р-соединения происходит также легче. Эти различия могут быть обусловлены разностью расстояний крупного гидрофильного остатка малеинового ангидрида от основного центра притяжения к воде головного карбоксила. Представляется, однако, более вероятным, что эти различия связаны с влиянием стереохимической конфигурации на свободу доступа гидрофильных групп к воде при горизонтальном положении молекул, а также на стабильность упаковки более сложной средней части молекул в конденсированных плёнках и, возможно, в твёрдом кристаллическом состоянии, к которому, вероятно, приближается структура материала, нагромождаемого над плёнкой при разрушении её под высоким поверхностным давлением. [c.105]

    При рассмотрении поверхностных явлений мы имеем дело с плёнкой, адсорбированной на поверхности жидкости или твёрдого тела (поверхностный слой). [c.8]

    Для химически чистых веществ до сего времени не наблюдалось поверхностных плёнок однородной толщины, превышающей размеры одной молекулы. Если монвмолекулярная плёнка сжимается до утолщения или если растекание является неполным благодаря недостаточному притяжению растворимых концов молекул к воде, избыток нанесённого вещества, не находящий себе места в пределах монослоя, собирается в виде местных уголщений (твёрдых или жидких) неизмеримо большей толщины. [c.38]

    Указания на существование новой разновидности поверхностных плёнок сплошного типа были получены Лэнгмюром и затем прожерены Лабрустом Адамом и другими исследователями. В настоящее время твёрдо установлено, что сплошные нерастворимые поверхностные плёнки алифатических соединений могут находиться в растянутом состоянии, промежуточном по площади между состоянием весьма плотной упаковки конденсированных плёнок и газообразным состоянием, в котором каждая молекула движется по поверхности самостоятельно. Этот весьма интересный тип плёнки будет рассмотрен в 18 и 19. [c.43]

    Химические реакции в поверхностных пленках. При изучении реакций в поверхностных плёнках наибольший интерес представляет вопрос, изменяется ли химическая активность молекул в результате их нахождения на поверхности. На твёрдых поверхностях, как и на поверхности сложных коллоидных частиц, известных под названием энзимов, наблюдается определённое повышение хими-ческой активности тех соединений, реакции которых катализ ются поверхностью энзима. Вообще говоря, самый факт нахождения молекул в монослое на поверхности жидкости не изменяет присущей им химической активности, которую удобнее всего оценивать по энергии активации молекул. Тем не менее, работы Райдила п его сотрудников показали, что доступность молекул плёнки для реагирующих с ними молекул или ионов подкладки в значительной мере зависит от ориентации и плотности упаковки молекул в плёнке, вследствие чего скорость реакцял вещества плёнки сильно зависит от её структуры. До сего времени, однако, нет никаких данных, позволяющих заключить, что поверхность жидкости обладгет достаточной жёсткость для создания напряжений, способных изменить состояние активации молекулы на поверхности, если толысо плёнка не сжата. С другой стороны, твёрдые поверхности и энзимы способны создавать напряжения, изменяющие химическую активность адсорбированных молекул (гл. VII). , [c.129]

    Плёнки на ртути. Нерастворимость органических соединений в ртути и, вместе с тем, большое поверхностное натяжение этой жидкости делают её, по крайней мере теоретически, идеальной подкладкой для поверхностных плёнок. На практике, однако, существуют два серьёзных затруднения в её использовании для этой цели, которые до сего времени не удалось преодолеть в такой степени, чтобы обеспечить возможность систематических исследований плёнок на ртути. Чрезвычайно трудно поддерживать чистоту поверхности ртути. В обычных условиях в воздухе ртуть покрывается плёнкой, которая вскоре делается видимой и нередко становится твёрдой. Тронстад и Фичем дают обзор литературы, посвящённой этой плёнке. До сих пор неизвестно, обусловлена ли она окислами (или другими соединениями) самой ртути или окислами посторонних металлов, присутствующих в ртути в виде примесей. Одной лишь перегонкой рт ть очистить нельзя хорошо известно, что перегонкой нельзя удалить наиболее летучие из окисляемых металлических примесей. Окислительная обработка более эффективна например, перегонка в медленном воздушном потоке и обработка серной кислотой и двухромо окислым калием Шеппард и Кинан выяснили, что повторное покрытие поверхности ртути плёнкой коллодия с последующим снятием её надолго очищает поверхность и делает её менее восприимчивой к самопроизвольному загрязнению. Это говорит о том, что налёт на ртути обусловлен растворёнными в ней неблагородными металлами. По наблюдениям Бурдона, ртуть загрязняется большинством сортов стекла. Вследствие трудности удаления источников налёта, целесообразнее всего держать ртуть во время опытов в атмосфере, свободной от кислорода и, по возможности, от водяных паров. Прибор, отвечающий этим требованиям, описан Фа-хиром [c.137]

    Образование поверхностных плёнок путём самопроизвольного растекания твёрдого вещества. Как Покельс так и более поздние исследователи отмечают, что твёрдые вещества, по- [c.138]


    Ограниченность подрижности молекул в твёрдых телах. Основное различие между жидкостями и твёрдыми телами заключается в том, чго частицы жидкостей способны легко перемещаться на большие расстояния, в то время, как в твердых телах они практически закреплены в определённых положениях. Влияние такой ограниченной подвижности на свойства поверхностей имеет двоякий характер. Во-первых, в твёрдых телах практически отсутствуют или во всяком случае гораздо слабее выражены те свойства жидких поверхностей, которые обусловлены свободным движением частиц. Так, твёрдые поверхности, как правило, не сокращаются самопроизвольно. Кроме того, как будет показано в гл. VI, жидкости не растекаются и не образуют поверхностных плёнок на твёрдых поверхностях, даже если адгезия жидкости к твёрдой поверхности достаточно велика для сообщения ул<е образовавше йся плёнке большой устойчивости. [c.224]

    Данн и Констэйбл2 пользовались методом, основанным на одновременных измерениях толщины оксидной плёнки (или какой-либо другой плёнки, образуемой при реакции твёрдого тела с газом) и количества вещества, потерянного твёрдым телом на образование этой плёнки. Толщина плёнки оценивалась по цветам побежалости окисляемой металлической проволоки, а потеря металла — по понижению электропроводкости. Этот метод применим лишь к телам достаточно простой формы кроме того Иване и Баннистер з, а также Уилкинс подвергли его критике на том основании, что всегда существует риск, что поверхностная плёнка, наряду с окислом, может содержать металл. Не всегда легко получить плёнку однородной толщины и, кроме того, этим методом нельзя установить наличия трещин или неровностей, глубина которых не превышает т л-щины оксидной плёнки. [c.327]

    Мономолекулярные плёнки могут существовать в различных видах, соответствующих в двухмерном пространстве поверхностного слоя трём агрегатным состояниям вещества в объёме — твёрдому, жидкому и газообразному. Основным фактором, определяющим устойчивость плёнки, является прочность закрепления молекул на поверхности, т. е. величина силы их притяжения, нормального к поверхности. Основными же факторами, определяющими агрегатное состояние плёнки, являются величина и распределение когезионных сил, действующих между молекулами тангенциально к поверхности. При слабом нормальном притяжении молекул плёнки к жидкой подкладке они нагромождаются друг на друга даже при слабом танге.чциальном сдавливающем усилии, и плёнка не образуется вовсе. Если же притяжение к подкладке велико, а тангенциальная когезия мала, молекулы плёнки движутся по поверхности независимо друг от друга, участвуя в пo тyпiтeльнoм движении ыолекул подлежащей жидкости. Такая плёнка напоминает газ или разбавленный раствор и носит название газообразной или парообразной . Если тангенциальная когезия велика, молекулы слипаются в крупные конденсированные острова , в которых поступательное тепловое движение молекул по поверхности затруднено. Отдельные молекулы могут вылетать за пределы этих островов, заполняя остальную часть поверхности разрежённой парообразной плёнкой. Это стремление вылетать в область разрежённой плёнки аналогично испарению трёхмерного твёрдого тела или жидкости и обусловливает определённое давление, аналогичное давлению насыщенного пара. Давление газообразной плёнки нередко настолько значительно, что поддаётся измерению. [c.32]

    В 1899 г. Рэлей ввёл новые представления в теорию этих плёнок. Он подтвердил н блюдение Покельс о том, что поверхностное натяжение сохраняет значение, соответствующее чистой воде, до некоторого критического значения площади и быстро падает при дальнейшем её уменьшении. Он предположил, что при этой критической площади молекулы накапливаются в таком количестве, что соприкасаются друг с другом и образуют слой толщиной в одну молекулу на всей поверхности. Рэлей пишет ... в какой момент возникает сопротивление сжатию Ответ зависит от природы сил, действующих между молекулами масла. Если они ведут себя как гладкие твёрдые шарики кинетической теории газов, то между ними не возникает никаких сил взаимодействия до тех пор, пока не достигнута плотная упаковка. .. Если мы примем эги представления..., то начало уменьшения поверхностного натяжения должно соответствовать моменту образования слоя толщиной в одну молекулу, и диаметр молекулы масла должен быть около 1 л[1,. .. Всякое другое поведение молекул указывяло бы на то, чти силы отталкивания между ними появляются задолго до образования первого сплошного слоя 2. [c.35]

    В период между 1903 и 1914 гг. большое количество опытов было проделано Дево. Пользуясь лёгким порошком, насыпанным на поверхность (чго является удобным методом наблюдения растекания масла), он подтвердил большую часть результатов Покельс и Рэлея. Он обнаружил, что масла растекаются до определённой максимальной площади, очевидно, равной той площади, при которой начинается падение поверхностного натяжения. Рассчитав толщину этих плёнок, он нашёл, что она того же порядка, чт и приближённо известные в то время размеры молекул Дево впервые заметил, что плёнки могут быть в твёрдом состоянии, обладая модулем сдвига, препятствующим их свободному течению по поверхности под дейстрием дутья. Марселей изучал случаи равновесия между растёкшимися плёнками и капельками масла. [c.39]

    В монослоях встречаются все градации вязкости, пластичности и упругости формы, начиная с вязкости воды с чистой поверхностью, через малую и умеренную нормальную вязкость, аномальную вязкость, и кончая твёрдыми плёнками, обладающими настолько высокой прочностью, что они способны образовывать мост через широкое пространство, выдерживающий давление до нескольких дин с одной стороны при полном отсутствии давления с другой. Вязкость, естественно, возрастает с увеличением числа молекул плёнки на единицу площади, но также испытывает не вполне выясненную ещё зависимость от ориентации и сил притяжения между молекулами плёнки. При сжатии плёнки до одного из состояний с более плотной упаковкой происходит не только повышение вязкости, но, как правило, также и отклонение от простого закона вязкого течения, т. е. вязкость становится аномальной и растёт с уменьшением градиента скорости. Относительно конденсированных плёнок длинноцепочечных спиртов, довольно подробно изученных Фортом и Гаркинсом давно известно, что их кривые зависимости поверхностного давления от площади состоят из двух ветвей с изломом между ними (рис. 15, кривая ИП, выше которого цепи плотно упакованы. Ниже этой точки излома их вязкость нормальна, а выше — аномальна. Жоли обнаружил, что газообразные плёнки дают заметное повышение вязкости при площадях, приблизительно равных площади, занимаемой лежачей молекулой. Уже давно известно, что в большинстве газообразных плёнок при этой площади происходит некоторое уменьшение сжимаемости, несомненно обусловленное тем, что молекулы начинают отклоняться от горизонтального положения за недостатком площади для лежачего положения. В случае быстрого нанесения плёнок протеинов при значительном и возрастающем давлении, вязкость часто повышается с течением времени при повышении давления происходит весьма заметное увеличение вяJ- [c.501]


Смотреть страницы где упоминается термин Поверхностные пленки на твердых: [c.642]    [c.642]    [c.642]    [c.72]    [c.139]    [c.270]    [c.524]   
Краткий курс физической химии Издание 3 (1963) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Гидрофобность твердых тел Денатурация поверхностной пленки

Образование поверхностных плёнок путём самопроизвольного растекания твёрдого вещества

Пленки поверхностные

Пленки твердые

Поверхностные пленки на твердых гелах

Поверхностные пленки на твердых телах

Структура и физические свойства твердых поверхностных пленок



© 2025 chem21.info Реклама на сайте