Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Лейцин распределение в белках

    Распределение остатков внутри и снаружи молекулы согласуется с данными для других глобулярных белков. Гидрофобные остатки предпочтительнее располагаются внутри молекулы, а заряженные группы — снаружи [52]. Поскольку участок в р-форме находится главным образом внутри глобулы, в нем обнаружено много гидрофобных аминокислот, в том числе лейцина и фенилаланина. Всего в контакте с водой не принимают участия 78 остатков. Из них 22 могут образовывать водородную связь с атомами пептидной связи или близлежащих остатков, и, по-видимому, эта возможность почти во всех случаях реализуется [3, 52]. Два остатка триптофана (63 и 147) и один остаток тирозина (238) спрятаны внутри молекулы КПА. Остальные остатки этих аминокислот находятся в частичном контакте с растворителем. Существование водородной связи между ОН-группой Туг-238 и карбонильной группой Glu-270, вероятно, имеет некоторое значение для конформационного изменения с участием Glu-270 при связывании субстрата, как описано ниже. Четыре из десяти остатков пролина расположены у N-концов спиральных участков, а три —у концов наиболее длинных цепей в слое с р-структурой. Во внутренней части молекулы находятся три карбоксильные группы, принадлежащие остаткам 104, 108 и 292. Конечно, справедливость этого утверждения зависит от того, насколько правильно установлен тот факт, что они являются свободными и не участвуют в образовании амидных связей. Карбоксильная группа Glu-292 образует солевой мостик с Arg-272, так что ее заряд локально нейтрализован. Детальное изучение карт электронной плотности обнаружило неизвестный ранее факт внедрения в молекулу карбоксипептидазы десяти молекул воды [52]. [c.514]


    В настояш ее время некоторыми авторами высказывается идея о том, что распределение полярных и неполярных аминокислот вдоль полипептидной цепи является одним из важных элементов кодирования пространственной структуры глобулярных белков. Еще Фишером [55] было показано, что соотношение суммарных объемов полярных и неполярных аминокислотных остатков может обусловливать форму белковой молекулы (сферическую или вытянутую), а также способность образовывать четвертичные структуры. Анализ, проведенный Перутцем, Кендрью и Уотсоном [66] на примере восемнадцати аминокислотных последовательностей в различных миоглобинах и гемоглобинах, показал, что из 150 остатков, входящих в эти молекулы, 33 находятся в местах, экранированных от контакта с водой, т. е. во внутреннем ядре белковой глобулы, причем 30 из 33 являются неполярными аминокислотами (глицин, аланин, валин, лейцин, изолейцин, фенилаланин, иро-лин, цистеин, метионин, тирозоин и триптофан). Это наводит [c.16]

    Для определения N-концевых групп пептидов и белков ус-пепшо используют наряду с динитрофенильными производными также фенилтиогидантоины аминокислот [346], которые можно разделять п идентифицировать хроматографией на бумаге [266] или тонкослойной хроматографией на силикагеле [584, 585]. Ванг и сотр. [711] сообщили о применении полиамидных слоев для разделения фенилтиогидантоинов (табл. 35). Распределение Rf очень хорошее, за исключением лейцина и изолейцина. [c.100]

    Уже давно известно, что некоторые аминокислоты появляются в гидролизатах белков ранее, чем другие. Так, например, при гидролизе казеина лейцин отщепляется очень быстро, в то время как отщепление валина происходит значительно медленнее. Быстрое отщепление лейцина рассматривается как следствие его концевого положения в пептидной цепи [92]. Надо указать также, что частичный гидролиз ряда белков концентрированной соляной кислотой при 37° ведет к образованию полипептидов, состоящих главным образом из диаминокислот [93]. С другой стороны, прн частичном гидролизе шерсти в гидролизате был обнаружен пептид, состоящий из двух молекул глутаминовой кислоты [94]. Результаты этих исследований показывают, что распределение аминокислот в глобулярных белках далеко не однородно. [c.136]

    Одним из важнейших результатов применения меченых атомов к изучению живых организмов было, как уже указывалось, открытие высокой динамичности процессов распада и ресинтеза жиров, углеводов и белков, ведуш,их к быстрому их обновлению в тканях и органах. В работах Шенгеймера [1061 и других биохимиков это было наглядно показано для жиров и углеводов путем применения дейтерия и изотопов углерода, а для белков, главным образом, путем применения тяжелого азота, радиоактивных изотопов фосфора и серы. При введении в пищу жирных кислот, меченных дейтерием в радикале, этот дейтерий быстро появляется в жирах всех органов и, прежде всего, в жировых запасах, откуда он переходит в другие места. Средняя продолжительность пребывания каждого атома меченого водорода в теле позвоночных близка к двум неделям. При кормлении крыс гидролизатом казеина, содержавшим дейтерий, было установлено, что за три дня обновляется 10% протеинов печени и 25% протеинов мускулов. При кормлении казеином с цитратом аммония, меченным тяжелым азотом, последний через несколько дней был обнаружен почти во всех аминокислотах тела (но не в несинтезирующемся в нем лизине), в креатине мышц, гиппуровой кислоте мочи и проч. Если животное имело бедную белками пищу, то оно усваивало около половины вводимого азота. При нормальной диете, когда животное находилось в состоянии азотного равновесия, усвоение азота уменьшалось, но качественная картина оставалась той же. Столь же быстрое усвоение и распределение азота в организме наблюдается при кормлении глицином, лейцином, тирозином и другими аминокислотами, меченными тяжелым азотом. Азот из пищи особенно быстро усваивается в виде синтезируемых глютаминовой и аспарагиновой кислот. Это, очевидно, связано с быстрым течением открытых А. Е. Браунштейном и М. Г. Крицман реакций энзиматического переаминирования этих кислот с а-кетокислотами, а также с их исключительной ролью в общем обмене аминокислот и протеинов [11]. [c.496]


    Гистограммы (рис. 3), полученные в настоящее время, по крайней мере, для пятидесяти белков, показывают, что некоторые из выводов Бейли должны быть изменены. Нельзя считать случайным тот факт, что некоторые функциональные группы (аминокислотные остатки), повидимому, распределяются в белках таким образом, что соответствующие гистограммы представляют собой одну или несколько накладывающихся друг на друга нормальных кривых распределения. Это ясно видно из суммарного содержания лейцина и изолейцина, анионных и липотропных групп. Если такое распределение является отражением определенной закономерности, то оно может быть свидетельством в пользу того, что а) механизм синтеза белка является в известной степени общим для всех типов клеток и что б) такой механизм, Вероятно, обеспечивает избирательность и не допускает синтеза всех стереохимически возможных белков. [c.260]

    При синтезе случайных последовательностей достаточно длинные неполярные кластеры также возникают в цепи с некоторой вероятностью, хотя в природных цепях они, конечно, определяются генетическим кодом. В обоих случаях возникшие неполярные сгущения затем слипаются своими непрерывными неполярными поверхностями. Распределение а- и -участков по длинам и по а- и -конформациям в случайных последовательностях близки к соответствующим распределениям в реальных глобулярных белках. Это было показано, в частности, на статистических сополимерах глутаминовой кислоты с лейцином. Кроме того, оказалось, что все наиболее распространенные типы укладки и топологии а- и -участков в реальных белках (см. рис. IX.12) могут быть получены в химически однородных полипептидных цепях с неполярными остатками. [c.215]

    С другой стороны, данные табл. I—IV Приложения демонстрируют разницу в аминокислотном составе пептидов, принадлежащих разным тканям и участвующих в регуляции тканеспецифических функций. Аминокислотный состав каждой группы РП можно использовать для сравнения их между собой по частоте включения аминокислотных остатков, подобно тому как это сделано для усредненного белка в работе В. А. Конышева (1985). Для такого сравнения и использованы данные, приведенные в вышеупомянутых таблицах, и полученные результаты даны в табл. 6. где представлены только 9 первых разрядов, так как в исследуемых системах аминокислотные остатки, относящиеся к первым 6 рангам, занимают более 55%, а остатки первых 9 рангов — более 80% всех мест в полипептидных цепях. В табл. 6 также включены данные для нескольких регуляторных белков, которые будут рассмотрены в следующем разделе. Хочется отметить, что распределение аминокислот по рангам частоты для природных регуляторных пептидов и белков отличается от такового синтетических протеиноидов (см. табл. 5) высоким рангом лейцина, глутаминовой кислоты и цистеина, но сходно с ним высоким рангом глицина, аланина и лизина. [c.78]

    Для многих белков хроматина характерны особые структурные мотивы, обеспечивающие их связывание с ДНК (рис. 3.19). Мотив а-спираль-поворот-а-спи-раль содержит две а-спирали, соединенные поворотом пептидной цепи. Лейци-новая застежка- молния также содержит два а-спиральных участка, в пептидной цепи которых у каждого второго витка а-спирали (около 6 аминокислотных остатков) находится лейцин. При таком распределении радикалы всех остатков лейцина оказываются расположенными на одной стороне а-спирали. Две такие а-спирали соединяются друг с другом в результате гидрофобного взаимодействия радикалов лейцина. [c.115]


Смотреть страницы где упоминается термин Лейцин распределение в белках: [c.439]    [c.43]    [c.49]    [c.319]    [c.227]    [c.216]    [c.62]   
Белки Том 1 (1956) -- [ c.239 , c.242 , c.244 , c.250 , c.254 , c.258 , c.261 ]




ПОИСК





Смотрите так же термины и статьи:

Лейцин



© 2025 chem21.info Реклама на сайте