Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Химические медиаторы

    В результате изучения нервно-мышечных соединений, образованных автономной нервной системой, еще в 1904 г. было высказано предположение, что нервные окончания высвобождают адреналин (эпинефрин). Хотя позднее выяснилось, что в действительности химическим медиатором является норадреналин >, принципиально важно, что была сфор- [c.330]

    Биосенсоры принадлежат к семейству молекулярных сенсоров и поэтому включают селективную к определяемому веществу поверхность вблизи преобразователя или интегрированную в преобразователь (рис. 7.8-1), функцией которой является передача сигнала о взаимодействии между поверхностью и определяемым веществом либо непосредственно, либо через химический медиатор. В биосенсорах специфичная к определяемому веществу поверхность использует биомолекулы, распознающие молекулярные участки или их аналоги. [c.518]


    По современным представлениям, вещества этой группы избирательно накапливаются в окончаниях симпатических нервов и нарушают образование в них и выделение ими химического медиатора — норадреналина. В отличие от ганглиоблокирующих веществ они прерывают проведение нервного возбуждения от центра к периферии, действуя постганглионарно и не влияя на передачу возбуждения в ганглиях. [c.60]

    Для обсуждения возможной роли ауксина в регулировании перераспределения катионов представляет интерес анализ некоторых данных, полученных при изучении механизма действия химических медиаторов нервного возбуждения. Как известно, [c.35]

    Адреналин и продукты его превращения по своей химической природе стоят бли жо к симпатинам — веществам, освобождающимся на концевых аппаратах симпатических нервов при их возбуждении. Симпатины являются химическими медиаторами симпатической нервной системы, так как с их помощью передаются импульсы от симпатических нервов к органам. [c.144]

    Существует ряд доказательств в пользу теории передачи нервных импульсов с помощью химических медиаторов. Основные из них, подтверждающие положение о том, что ацетилхолин — медиатор парасимпатической нервной системы, следующие 1) гидролиз ацетилхолина под воздействием холинэстеразы — процесс, специфический для нервной ткани и протекающий с огромной скоростью 2) скорость гидролиза ацетилхолина совпадает со скоростью передачи нервного импульса 3) холинэстераза локализована исключительно на поверхности аксона 4) торможение действия холинэстеразы физостигмином, эзерином и другими веществами замедляет и прекращает передачу нервных импульсов. Отсюда можно заключить, что в основе передачи нервного импульса по парасимпатическим нервам лежит биохимическая система, приводящая к синтезу и освобождению ацетилхолина и затем к его разрушению. [c.568]

    Три стратегии химической сигнализации использование гормонов, локальных химических медиаторов и нейромедиаторов [c.339]

    Локальные химические медиаторы [c.342]

    Локальные химические медиаторы после их секреции быстро разрушаются, подвергаются обратному захвату или иммобилизуются [4] [c.347]

    Для синтеза многих химических медиаторов существуют специальные клетки, но есть и такие медиаторы, источники которых более разнообразны. Важным примером служат простагландины - семейство производных жирной кислоты с 20 атомами углерода, образующихся во всех тканях млекопитающих. Эти локальные медиаторы непрерывно синтезируются в мембранах клеток из предшественников, отщепляемых от мембранных фосфолипидов фосфолипазами (рис. 12-8). и столь же непрерывно разрушаются ферментами во внеклеточной жидкости Существует не менее 16 различных простагландинов, подразделяемых на 9 классов (PGA, PGB, РОС,. .. PGI), которые, связываясь со специфическими рецепторами клеточной поверхности, вызывают разнообразные биологические эффекты. [c.348]


    Внеклеточные сигнальные молекулы можно разделить по степени их дальнодействия на три основных класса 1) локальные химические медиаторы, которые быстро поглощаются ти разрушаются и поэтому оказывают влияние только на соседние клетки 2) гормоны, которые переносятся к своим мишеням, распределенным нередко по всему организму, с кровотоком 3) нейро медиаторы, действующие только на постсинаптическую клетку. Каждый тип клеток организма имеет свойственный ему набор белков-рецепторов, позволяющий запрограммированным и характерным образом реагировать на соответствующий набор сигнальных молекул. [c.349]

    Поскольку факторы роста секретируются в малых количествах, их трудно выделять. Эта трудность усугубляется сложностью их действия, так как большинство типов клеток, видимо, реагирует на специфическую комбинацию факторов роста, а не на какой-то один специфический фактор. Хотя до сих пор было охарактеризовано сравнительно немного различных факторов роста (меньше 30). многие из них повторно находили в других условиях и давали им другие названия - только позднее выяснялось, что это были уже известные молекулы. Из этого, возможно, следует, что имеется лишь небольшое число факторов роста, которые, действуя в разных комбинациях, избирательно регулируют пролиферацию каждого из многочисленных типов клеток высших животных и становится ясно, что те же самые факторы действуют в определенных условиях как регуляторы других процессов, в особенности процессов клеточной дифференцировки. Некоторые факторы роста циркулируют в крови, но большинство действует как локальные химические медиаторы. Класс локальных химических медиаторов, возможно, включает и большое число еще плохо изученных факторов, помогающих регулировать деление и дифференцировку клеток в процесс развития организма (разд. 16.2.3). В дополнение к факторам роста, стимулирующим клеточное деление, есть и противоположно действующие факторы, которые его тормозят, хотя по большей части они охарактеризованы менее полно. [c.418]

    Клеточное деление у многоклеточных животных зависит от сложных социальных регуляторных механизмов, и пролиферация различных типов клеток контролируется различными сочетаниями белковых факторов роста. Они действуют в очень малых концентрациях, и многие из них служат локальными химическими медиаторами, позволяющими регулировать плотность клеточной популяции. Кроме того, большинство нормальных клеток неспособно делиться без прикрепления к внеклеточному матриксу. При недостатке факторов роста или при невозможности прикрепиться к матриксу клетки останавливаются после митоза, переходя в особое состояние покоя —Со из которого после добавления факторов роста они могут выйти лишь через несколько часов. Когда клетка вышла из состояния Со и прошла точку рестрикции в она быстро проходит фазы 8, 02 и М независимо от прикрепления или факторов роста. В пролиферирующей клеточной популяции переход через точку рестрикции представляет собой событие типа всё или ничего , которое, подобно радиоактивному распаду, характеризуется определенной вероятностью осуществления. В дополнение к непосредственному контролю клеточной пролиферации существуют еще долговременные механизмы, приводящие к старению и прекращению деления нормальных соматических клеток млекопитающих в культуре после ограниченного числа циклов деления. [c.425]

    Теснейшая взаимосвязь между растениями и насекомыми — хорошо изученный биологический феномен, и накоплено множество фактов, указываю-ших на огромную роль химических веществ как регуляторов этих взаимоотношений [ 19]. Примерно полмкллиона видов насекомых кормится на растениях. В свою очередь, процессы репродукции множества растений критически зависят от переноса пыльцы, осушествляемого насекомыми. Поэтому неудивительно, что среди множества природных веществ, продуцируемых растениями, можно найти как аттрактанты для полезных насекомых, так и репелленты или даже инсектициды для вредных [20]. Фантастическое разнообразие структур соединений, используемых для этих целей (среди них можно найти ациклические и полициклические соединения, в том числе изопреноиды, ароматтеские и гетероароматические соединения, множество а,ткалои-дов различного строения и т. д.) может служить прекрасной иллюстрацией того, наско.тько широки возможности Природы в выборе структур органических соединений, выполняющих те или иные функции. Однако надо сказать, что в общем имеется немного достоверных сведений о реальном механизме действия химических медиаторов во взаимоотношениях растений и насекомых. [c.28]

    Несмотря на то что представление о функции нейронов, изложенное выше, является общепринятым на протяжении многих лет, все же последние открытия показывают, что оно должно быть частично пересмотрено. По-видимому, дендриты обладают способностью не только принимать информацию, но и передавать ее. Кроме того, если на большие расстояния передача информации осуществляется, несомненно, посредством пиковых потенциалов действия, то между более короткими нейронами и дендритами коммуникация в основном происходит путем обмена химическими веществами через контакты со щелью (gap junti-ons), обладающие низким электрическим сопротивлением (электротони-ческие соединения) (гл. 1, разд. Д,3). Через эти межклеточные контакты могут передаваться небольшие изменения мембранного потенциала, что отражается на поведении прилегающих нейронов. Химические медиаторы влияют не только на электрические характеристики лостсинаптических нейронов, но могут воздействовать на метаболизм или транскрипцию генов [36а]. [c.327]


    Конформационные изменения канала под действием электрического поля или химических медиаторов называют воротными как уже сказано, они регулируют прохождение ионов — гокг ворот . Эти изменения происходят за время от 30 мкс до 10 мс. Они имеют стохастический характер. Суть модели Ходлгкпиа — Хаксли состояла в том, что для активации каждого Ка" -ка-нала в процессе деполяризации необходимы три воротные-пг-частицы для инактивации нужна одна воротная /г-частица , Можно показать, что эта модель эквивалентна наличию-восьми различающихся конформационных состояний Ка -каналов и пяти состояний К -каналов. Только одно из восьми состояний Ка -канала является проводящим. Однако эта модель остается феноменологической, и имеются данные, ей противоречащие. [c.381]

    МП следующего аксона и не касаются их. Прп поступлении нервного импульса окончания аксона выделяют особые химические медиаторы. Чем сильнее нервный импульс, том больше выделяется медиатора [1. 14]. В ганглиях насекомых и в нервно-мышечных соединениях теплокровных медиатором является ацетплхолин, который воздействует на ионную проницаемость мембран клеток, изменяет их потенциал. [c.37]

    У высших животных, имеющих эндокринную систему, существует еще один уровень регуляции метаболических процессов. Гормоны служат химическими медиаторами, стимулирукяцими или подавляющими определенные метаболические процессы [c.124]

    Биологическое действие. Холин (витамин В ) является донором метильных групп, используемых при синтезе незаменимой аминокислоты метионина и участвует в обмене белков. Он входит в состав ацетилхолина — химического медиатора нервной системы и таким образом участвует в передаче нервных импульсов. Входя в состав фосфолипидов, осуществляет ли-потропную функцию, т. е. предохраняет печень от ожирения и способствует накоплению в ней гликогена. [c.123]

    С биохимической точки зрения, большой интерес имеет изучение процессов обмена венц ств, приводящих к образованию, а затем к распаду химических медиаторов. В этом отношении подробно изучены процессы синтеза и распада ацетилхолина. [c.567]

    Некоторые белки непрерывно секретируются производяшими их клетками. Нри этом они упаковываются в транспортные пузырьки в аппарате Гольджи и затем переносятся непосредственно к плазматической мембране. В этом случае говорят о конститутивном пути секреции. В других клетках определенные белки и/или малые молекулы запасаются в специальных секреторных пузырьках, которые сливаются с плазматической мембраной только после получения клетки соответствуюш,его сигнала извне. Этот процесс носит название регулируемого пути секреции (рис. 6-69). Конститутивный путь осуш,ествляется во всех клетках, а регулируемый путь обнаружен главным образом в клетках, приспособленных для секреции производимых ими вешеств в зависимости от определенных потребностей. Обычно это гормоны, нейротрансмиттеры или перевариваюш,ие ферменты. В таких специализированных секреторных клетках сигналом к секреции часто служит химический медиатор, например, гормон, связываюш,ийся с рецепторами на клеточной поверхности. В результате происходит активация рецепторов, которая генерирует внутриклеточный сигнал, зачастую включающий кратковременное повышение концентрации свободного Са " в цитозоле (см. разд. 12.3.7). С помощью неизвестного механизма этот сигнал (сигналы) инициирует процесс экзоцитоза, побуждая секреторные пузырьки к слиянию с плазматической мембраной и. таким образом, к высвобождению их содержимого во внеклеточное пространство. [c.409]

    Химические сигнальные механизмы различаются по расстояниям, на которых они действуют 1) в случае эндокринной сигнализации специализированные эндокринные клетки выделяют гормоны, которые разносятся кровью и воздействуют на клетки-мишени, находящиеся иногда в самых разных частях организма 2) в случае иаракринной сигнализации клетки выделяют локальные химические медиаторы, которые поглощаются, разрушаются или иммобилизуются так быстро, что успевают подействовать только на клетки ближайшего окружения, быть может, в радиусе около миллиметра 3) при синаитической передаче, используемой только в нервной системе, клетки секретируют нейромедиаторы в специализированных межклеточных контактах, называемых химическими синапсами, Нейромедиаторы диффундируют через синаптическую щель, обычно на расстояние около 50 нм, и воздействуют только на одщ постсинантическую клетку-мишень (рис. 12-2). В каждом случае мишень реагирует на определенный внеклеточный сигнал с помощью специальных белков, называемых рецепторами, которые связывают сигнальную молекулу и инициируют ответ. Многие сигнальные молекулы и рецепторы используются в передаче сигнала и по эндокринному, и по паракринному, и по синаптическом типу. Главные различия касаются быстроты и избирательности воздействия сигнала на определенные мишени. [c.339]

Рис. 12-2. Три формы сигнализации с помощью секретируемых молекул. Не все нейромедиаторы действуют в синапсах, как показано на рисунке некоторые из них работают как локальные химические медиаторы (по паракринному типу), влияя сразу на целую группу соседних клеток- Рис. 12-2. Три формы сигнализации с помощью секретируемых молекул. Не все <a href="/info/1865985">нейромедиаторы действуют</a> в синапсах, как показано на рисунке некоторые из них работают как <a href="/info/509879">локальные химические медиаторы</a> (по паракринному типу), влияя сразу на целую <a href="/info/74996">группу соседних</a> клеток-
    Работа нервных клеток отличается гораздо большей быстротой и точностью. Они могут передавать информацию на большие расстояния но нервном волокну с помощью электрических импульсов со скоростью более 100 м/с. Только в нервных окончаниях, где высвобождается нейромедиатор, эти импульсы преобразуются в химические сигналы. Химический сигнал нервной клетки может действовать как наракринный или как синантический. В первом случае нейромедиатор, подобно локальному химическому медиатору, диффундирует наружу и влияет на все соседние клетки-мишени, у которых имеется надлежащий рецептор При синаитической передаче сигнал гораздо более точен и действие нейромедиатора ограничено единственной клеткой-мишенью, даже если соседние клетки имеют рецепторы для того же нейромедиатора (рис. 12-3, Б). Поскольку расстояние, на которое нейромедиатор должен в таких случаях диффундировать, меньше 100 нм, процесс длится менее миллисекунды (рис. 12-2). [c.340]

    Все известные нейромедиаторы, а также большинство гормонов и локальных химических медиаторов водорастворимы. Есть, однако, исключения, и они образуют отдельный класс сигнальных молекул. Важными примерами служат сравнительно плохо растворимые в воде стероидные и гиреоидные гормоны, которые переносятся кровью в виде растворимых комплексов со специфическими белками-переносчиками. С таким различием в растворимости связаны фундаментальные различия в механизмах действия этих двух классов молекул на клетки-мишени. Водорастворимые молекулы слишком гидрофильны, чтобы прямо приходить через липидный бислой плазматической мембраны поэтому они связываются со специфическими белковыми рецепторами на клеточной поверхности. Напротив, стероидные и тиреоидные гормоны растворимы в липидах и, отделившись от белка-носителя, могут легко проникать через плазматическую мембрану клетки-мишени. Эти гормоны связываются с белковыми рецепторами внутри клетки (рис. 12-7). [c.346]

    Сигнальные молекулы паракринного типа воздействуют только на ближайшее окружение выделяющей их клетки. Такие локальные химические медиаторы столь быстро поглощаются клетками, разрушаются внеклеточными ферментами или иммобилизуются во внеклеточном матриксе, что, как правило, не попадают в кровь в сколько-нибудь значительном количестве. [c.347]

    Сигнальные молекулы можно также классифицировать по их растворимости в воде. Небольшие гидрофобные молекулы, такие как стероидные гормоны или гормоны щитовидной железы, свободно проходят через плазматическую мембрану клетки-мишени и активируют рецепторний белок в ее цитоплазме. В отличие от этого гидрофильные молекулы, в частности нейр о медиаторы и большинство гормонов и локальных химических медиаторов, активируют белковый рецептор на поверхности клетки-мишени. [c.349]


Смотреть страницы где упоминается термин Химические медиаторы: [c.141]    [c.207]    [c.331]    [c.611]    [c.525]    [c.752]    [c.131]    [c.202]    [c.567]    [c.176]    [c.345]    [c.347]    [c.347]    [c.348]    [c.356]    [c.536]   
Биохимия Издание 2 (1962) -- [ c.567 ]




ПОИСК







© 2025 chem21.info Реклама на сайте