Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Вирусные онкогены

    Основной вопрос, который занимает исследователей со времени открытия вирусных онкогенов,— это вопрос об их происхождении. Опыты по гибридизации нуклеиновых кислот (см. гл. 36) показали, что нормальные клетки содержат последовательности ДНК, сходные (а возможно, идентичные) с вирусными онкогенами. Очевидно, в период внутриклеточного развития вирусы включают в свой геном клеточные гены. Их присутствие в геноме вирусов, по-видимому, обусловливает определенные селективные преимущества, связанные, например, с изменением характера роста трансформированных клеток. [c.359]


    Сокращенные названия клеточных и вирусных онкогенов [c.359]

    Многие опухолеродные вирусы содержат один или несколько локусов (онкогенов), которые сами способны вызвать опухолевую трансформацию клетки-хозяина в этом случае нет надобности в изменении генов клетки. Таких вирусных онкогенов сейчас известно очень много, они активны в отношении клеток многих видов животных. Широкая распространенность и особые свойства этих необычных генов позволяют использовать опухолеродные вирусы как удобный инструмент в экспериментальной работе. [c.153]

    Возможно, онкогены нарушают нормальный механизм регуляции роста тем, что препятствуют нормальной дифференцировке клеток, приводящей к ограничению их ростовых потенций. Действительно, многие опухолевые клетки дифференцированы в меньшей степени, чем их нормальные аналоги. Это особенно характерно для лейкозных клеток человека отсюда представление о лейкозах как результате того, что на каком-то этапе блокировано созревание определенных клеток-предшественников. Поскольку такие клетки способны непрерывно делиться, появляется постоянно растущая популяция-опухоль, В пользу этого предположения говорит и анализ эффектов, вызываемых вирусными онкогенами. Например, один из ретровирусов вызывает трансформацию предшественников эритроцитов. Если вирусный онкоген инактивируется в результате мутации, незрелые клетки начинают дифференцироваться и теряют опухолевые свойства. [c.155]

    Поскольку эффекты вирусных онкогенов столь многочисленны, было бы естественно ожидать, что их продукты будут найдены во многих частях клет- [c.155]

    Ценная информация, которая оказалась весьма полезной для проведения биохимических исследований в клинике, была получена при изучении некоторых низших организмов и вирусов. Например, современные теории регуляции активности генов и ферментов сформировались на базе пионерских исследований, выполненных на плесневых грибах и на бактериях. Технология рекомбинантных ДНК зародилась в ходе исследований, проведенных на бактериях и бактериальных вирусах. Главным достоинством бактерий и вирусов как объектов биохимических исследований является высокая скорость их размножения это существенно облегчает проведение генетического анализа и генетических манипуляций. Сведения, полученные при изучении вирусных генов, ответственных за развитие некоторых форм рака у животных (вирусных онкогенов), позволили лучше понять механизм трансформации нормальных клеток человека в раковые. [c.11]

    HIV и отсутствуют у большинства других ретровирусов. Между тем этот вопрос представляется важным. Наши знания о наличии структурного и функционального сходства вирусных регуляторных генов и генов млекопитающих принципиальны для более полного понимания путей возникновения и эволюции вирусов данного типа, и, кроме того, могут быть полезными для выяснения функции этих вирусных генов и гомологичных им участков генома млекопитающих, указывая на возможные пути их дальнейшего исследования. В частности, в связи с наличием онкогенного потенциала у гена tat (см. выше) можно было предположить, что подобно многим другим вирусным онкогенам, он имеет клеточное происхождение. [c.173]


    Гомологи вирусных онкогенов  [c.11]

    В развитии опухолей принимают участие ДНК-вирусы и ретровирусы, которые интегрируются в геном клеток. Изучение их роли привело к открытию онкогенов в клетках млекопитающих. В нормальных клетках млекопитающих имеются последовательности ДНК, гомологичные вирусным онкогенам. Их назвали протоонкогенами (нормальный ген) или клеточными онкогенами (с онкогенными свойствами). [c.217]

    Необычайный интерес в последние годы вызвали РНК-содержащие онкогенные вирусы. Большинство исследователей, занимающиеся биохимической генетикой и функциями нуклеиновых кислот, считали, что ДНК образуется только за счет репликации других молекул ДНК- Если транскрибирование РНК с ДНК может протекать свободно, то обратный процесс, а именно образование ДНК на РНК-матрице, считался маловероятным. Большой неожиданностью поэтому оказалось обнаружение во многих онкогенных РНК-содержащих вирусах, и в том числе в вирусах, вызывающих у животных лейкоз, РНК-зави-симой ДНК-полимеразы (т.е. обратной транскриптазы). Этот фермент обнаруживается в зрелых вирусных частицах. Наиболее тщательно очищенный фермент вирусов миелобластоза птиц состоит из двух белковых субъединиц, имеющих мол. вес ПО ООО и 70 000, и содержит два атома связанного Zn +. Для функционирования фермента необходима короткая затравка и матричная цепь РНК. При этом сначала получается гибрид ДНК—РНК, из которого затем (вероятно, после гидролитического расщепления цепи РНК под действием РНКазы Н, разд. Д, 5, в) получается двухцепочечная ДНК. Таким образом, заражение РНК-содержащими вирусами сопровождается образованием [c.288]

    Эукариотические вирусы до сих пор нашли более скромное применение в качестве векторов. Практически используются только онкогенный вирус SV 40 и его производные. Все эти векторы — дефектные вирусы, не способные давать полноценные вирусные частицы в клетке хозяина. Анализируемую ДНК можно вводить и в другие репликоны, способные размножаться в клетках, например бактериофаги. Чаще всего из известных фагов в качестве векторов применяют сконструированные производные фага X и фагов М13 и fd. В векторах на основе бактериофага I. используется его особенность, состоящая в том, что большая часть его ДНК не участвует в размножении фага в клетке. Это позволяет вводить чужеродную ДНК в ДНК фага X в качестве вектора. [c.120]

Рис. 18.18. Анализ гибридных клеток по методу Саузерна. ДНК гибридных клеток мышь-человек обрабатывали рестриктазой HindIII и гибридизовали с зондом протяженностью 900 п. н., содержащим вирусный онкоген туе. На первой дорожке электрофореграммы гибридизуется полоса, соответствующая по- Рис. 18.18. <a href="/info/76129">Анализ гибридных</a> клеток по <a href="/info/1338361">методу Саузерна</a>. ДНК гибридных клеток <a href="/info/199785">мышь-человек</a> обрабатывали рестриктазой HindIII и гибридизовали с зондом протяженностью 900 п. н., содержащим вирусный онкоген туе. На первой дорожке электрофореграммы гибридизуется полоса, соответствующая по-
    ДНК из клеток карцином мочевого пузыря и легкого (вызываемых генами, гомологичными вирусным онкогенам ras) способна сама по себе индуцировать неопластическую трансформацию в культуре клеток мыши. Наиболее часто в подобных экспериментах используется реципиентная линия клеток мыши, обозначаемая NIH3T3. При трансформации с помощью ДНК, выделенной из неопластических клеток, клеттси NIH3T3 становятся раковыми с частотой 0,05-1 трансформантов на 1 мкг ДНК. Эту трансформацию вызывают препараты ДНК, выделенные лишь примерно из 50% опухолей, включая как спонтанные, так и индуцированные опухоли различных организмов (таблица 18.10). [c.324]

    Еще более важным обстоятельством представляется то, что неопластическая трансформация происходит и при трансфекции клеток линии NIH3T3 с помощью ДНК из нормальных клеток. Причиной этого явления может быть аномальная экспрессия нормальных генов. Трансформирующая способность ДНК из нормальных клеток может быть показана в экспериментах двух типов. Во-первых, при использовании для трансформации последовательностей ДНК из нормальных клеток, гомологичных вирусным онкогенам ras и mos, которые способны индуцировать неопластическую трансформацию. Во-вторых, при трансфекции тотальной геномной ДНК, выделенной из различных нормальных клеток животных. [c.325]

    Как РНК-, так и ДНК-содержащие опухолевые вирусы вызывают неопластическую трансформацию клеток, потому что присутствие в клетке вирусной ДНК индуцирует синтез новых белков, нарушающих регуляцию клеточного деления. Гены, кодирующие синтез таких белков, называются онкогенами. У опухолевых ДНК-вирусов онкогены обычно кодируют нормальные вирусные белки, необходимые для размножения вируса. Иначе обстоит дело у опухолевых РНК-вирусов онкогены, которые они несут, представляют собой модифипированные формы нормальных генов клетки-хозяина - они для размножения вируса не требуются. Поскольку в капсид ретровируса может уместиться лишь некоторое ограниченное количество РНК, необходимые онкогенные последовательности нуклеотидов часто замещают собой существенххую часть генома ретровируса и вирус оказывается дефектным. Мы расскажем позже (см. разд. 13.4.2 и разд. 21.2.1), почему изучение вирусных онкогенов послужило ключом к пониманию причин и природы рака, а также к познанию тех механизмов, которые в норме регулируют рост и деление клеток у многоклеточных организмов. [c.321]


    Первая тирозиновая протеинкиназа была открыта в 1979 г. Это был не поверхностный клеточный рецептор, а внутриклеточный продукт вирусного онкогена - белок, названный ррбО v-sr (разд. 13.4.2). Первым рецептором, у которого обнаружили тирозинкиназную активность (в 1982 г.), был рецептор для EGF. Несколькими годами позже выяснилось, что вирусный онкоген егЪВ кодирует урезанный вариант рецептора для EOF. Этот урезанный белок потерял EGF-связывающий наружный домен, но сохранил внутриклеточный домен с тирозинкиназной активностью, и поэтому клетки с такими дефектными рецепторами ведут себя гак, как будто на них постоянно действует сигнал к пролиферации Позднее выяснилось, что онкоген пей, активный в некоторых химически индуцированных опухолях нервной системы у крыс, кодирует аномальный рецептор, являющийся тирозиновой киназой, хотя природа лиганда (предположительно это ростовой фактор) для нормального рецептора не установлена. В этом случае аномальный и нормальный рецепторы различаются только по одному аминокислотному остатку в единственном трансмембранном сегменте белка. Такого изменения оказалось достаточно, чтобы сделать тирозиновую киназу постоянно активной. Эти исследования подчеркивают важную роль тирозиновых киназ в контроле клеточной пролиферации. [c.370]

    Аномальные клетки, не повинующиеся социальным сдерживающим факторам, пролиферируют с образованием опухолей в организме они также появляются при трансформации в культуре клеток Хотя это часто приводит к гибели всего организма, как индивидуальные клетки они получают селективное преимущество, и поэтому их легко выделять. Трансформация клетки часто сопровождается мутацией или сверхэкспрессией специфических онкогенов, во многих случаях выявленных благодаря их наличию в РНК опухолевых вирусов (ретровирусов). Нормальные гомологи таких вирусных онкогенов в здоровых клетках, называемые протоонкогенами, по-виоимому, кодируют ключевые ком- [c.437]

    Последовательности клеточной ДНК, гомологичные вирусным онкогенам, были найдены во многих клетках эукариот это значит, что они представляют собой важные компоненты нормальных клеток. Кроме того, соответствующие мРНК и кодируемые ими белки могут обнаруживаться на разных стадиях развития или жизненного цикла клеток. Такие гены нормальных клеток получили название протоонкогенов. Продукты протоонкогенов играют существенную роль в нормальной дифференцировке и других клеточных процессах. [c.359]

    Для идентификации вирусных онкогенов используются различные методики. Удобным генетическим подходом является получение мутаций в онкогене, ведущих к его инактивации при повышенной температуре. У таких температурочувствительных мутантов можно включать или выключать данный ген, просто повьппая или понижая температуру. При более низкой температуре (34°С) чувствительные клетки, содержащие вирусный онкоген, будут обладать опухолевым фенотипом и, например, расти в отсутствие некоторых факторов, в которых они нуждались ранее (табл. 11-1). Если затем экспрессию онкогена подавить, повысив температуру до 39°С, то клетки быстро (обычно через несколько часов) вернутся к нормальному фенотипу (рис. 11-15). Подобный цикл изменений фенотипа можно повторять многократно. Эти изменения доказывают, что температурочувствительный ген вируса-это и есть ген, ответственный за неопластическую трансформацию клеток, и, следовательно, его можно считать онкогеном. [c.153]

    Для идентификации вирусных онкогенов используется также метод трансфекции. Фрагмент ДНК, содержащий только один вирусный ген, вводят в клетку, растущую в культуре, где этот ген может иногда встроиться в геном [c.153]

    Фосфорилирование тирозина играет также роль и в механизмах, контролирующих поведение нормальных клеток. Например, связывание белкового гормона-д5актора роста эпидермиса (ФРЭ)-с рецептором на поверхности клетки индуцирует фосфорилирование тирозина в самом рецепторе и в некоторых других клеточных белках. Это фосфорилирование, как полагают, служит сигналом, опосредующим внутриклеточные эффекты ФРЭ. Оно приводит к тому, что клетка, ранее находившаяся в покое, начинает делиться. Интересно, что некоторые белки, в которых тирозин фосфорилируется в присутствии ФРЭ,-те же самые, в которых это происходит при воздействии продуктов ряда вирусных онкогенов. Это позволяет думать, что один и тот же процесс (фосфорилирование остатков тирозина) участвует как в нормальной, так и в аномальной стимуляции клеточного деления. [c.156]

    Представление а-спиральных участков в лейциновых молниях в виде колец. Рисунок иллюстрирует положение остатков пейцина (Ь) в лейциновых молниях следующих белков белка, связывающего знхансер (С/ЕВР) белка туе (с-тус) мыши белка, кодируемого вирусным онкогеном у-)ип белка ССМ4 дрожжей. Приведены также другие аминокислотные остатки, входящие в состав а-спирального участка лейциновой молнии. Номера аминокислот возрастают по мере их удаления от читателя. [c.131]

    Делеция АУ-богатого участка нормального клеточного гена с-/ох повыщает равновесную концентрацию соответствующей мРНК и превращает его в онкоген. И наоборот, вирусный онкоген -fos можно превратить в неонкогенный, заменив его [c.149]

    По-видимому, для регуляции роста и деления клеток используется несколько различных сигнальных путей. Некоторые гены, в норме кодирующие белки - компоненты этих путей, иногда случайным образом захватывались ретровирусами и встраивались в их геном, нередко в модифицированной форме (эти ретровирусы известны также как онкогенные РНК-содержащие вирусы). Такие украденные у клетки вирусные гены в некоторых случаях придают вирусам способность вызывать неконтролируемую пролиферацию зараженных клеток и таким образом становятся причиной развития опухолей. Такие гены получили название вирусных онкогенов. Изучение опухолей привело к открытию опухолеродных вирусов, затем онкогенов, а это в свою очередь-к открытию нормальных клеточных геное-протоонкогеное, из которых произошли вирусные онкогены (разд. 13.4.2). [c.367]

    Согласно принятым теперь взглядам, раковое перерождение клеток у животных чаще всего вызывают интеграционные ДНК- и РНК-содфжащяе вирусы. Обычно оно возникает не сразу, так как геном интеграционного вируса в хромосоме клетки-хозяина репрессируется. Трансформация клетки в злокачественную происходит после дерепрессии и считывания информации из вирусных онкогенов. Провоцирующими агентами этого могут явшъся канцерогены любой природы. [c.69]

    Встраивание вирусного генома в клеточную хромосому — обязательная стадия репродукции ретровирусов независимо от того, обладают ли они онкогенным (трансформирующим) действием. Реплици-руясь в.месте с клеточной ДНК при митозе, вирус-специфическая ДНК — провирус — передается в дочерние клетки. [c.313]

    Промоторные элементы провируса расположены в районе иЗ таким образом, возможность транскрипции провируса возникает после появления района иЗ впереди вирусного ДНК-генома, т. е. после возникновения LTR. Примерно за 25 п. и. до стартовой точки транскрипции(до л) имеется характерный ТАТА-элемент, за 75 п. и.— СААТ-элемент и за 100—300 п. н.— энхансер. У разных ретровирусов энхансер имеет разную силу , а у онкогенных ретровирусов сила энхансера может коррелировать со способностью вируса вызывать злокачественную транс( юрмацию клеток-мишеней. Для активирования энхансера необходимо его взаимодействие с клеточными белками-регуляторами в некоторых случаях, например у мышиного вируса рака молочных желез, эффективность энхансера регулируется гормонами (через посредство белков — рецепторов гормонов). [c.314]

    Легкость, с которой чужеродная ДНК встраивается в хромосомы бактб рий, поразительна. Происходит ли то же самое в организме человека На этот вопрос можно ответить утвердительно. Однако, в какой степени клетки человека устойчивы к изменениям, обусловленным внедрением в них вирусов, не ясно. Нам известно, что вирусы, вызывающие опухоли (онкогенные), могут включаться в геном клеток животных. Простейшими из них являются вирус полиомы и SV40 (дополнение 4-В). После включения вирусной ДНК в хромосому клетки-хозяина некоторые вирусные гены продолжают транскрибироваться. Другие находятся в неактивном состоянии, как в случае с фагом %. В редких случаях включение вирусной ДНК в геном клетки-хозяина приводит к трансформации клетки в опухолеподобное состояние. Связано ли это с действием специфических продуктов вирусных генов, с изменением фенотипического выражения генов хозяина или же с мутациями (как это имеет место при включении фага % в хромосому Е. соН), не известно. Ясно лишь, что свойства поверхностей трансформированных клеток при этом изменяются. Это в свою очередь приводит уменьшению контактного ингибирования (гл. 1, разд. Д, 3, в), ив результате начинается глубокое прорастание трансформированных клеток. Таким образом, основная отличительная черта опухолей может быть обусловлена включением вирусной ДНК в геном нормальной клетки [234, 235]. [c.288]


Смотреть страницы где упоминается термин Вирусные онкогены: [c.326]    [c.328]    [c.367]    [c.428]    [c.261]    [c.359]    [c.261]    [c.359]    [c.18]    [c.221]    [c.248]    [c.256]    [c.145]    [c.149]    [c.222]    [c.428]   
Молекулярная биология клетки Т.3 Изд.2 (1994) -- [ c.367 , c.427 , c.428 , c.429 , c.430 , c.431 , c.432 ]

Молекулярная биология клетки Т.3 Изд.2 (1994) -- [ c.367 , c.427 , c.428 , c.429 , c.430 , c.431 , c.432 ]




ПОИСК







© 2025 chem21.info Реклама на сайте