Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Цветение индукция

    Вызывает опадение шсть-ев, цветов и плодов, способствует цветению и созреванию плодов, вызывает эпинастию листьев, нарушает состояние покоя и индукцию синтеза ферментов. Ингибирует митоз, синтез ДНК, полярный и латеральный транспорт ауксина. Использ. при конц. [c.208]

    Было выдвинуто несколько теорий для объяснения механизма индукции цветения у ананаса. Одна из них состоит в том, что этилен повышает чувствительность растущих вегетативных почек к природным ауксинам. В другой предполагается, что экзогенно нанесенный ауксин снижает содержание природных ауксинов до оптимального для индукции цветения уровня. Авторы третьей считают, что цветение инициируется в результате накопления ауксинов в вегетативном апексе. Поскольку обработка этиленом в действительности не вызывает увеличения содержания ауксинов, но тем не менее индуцирует цветение, большинство исследователей сомневаются в правильности этой теории. [c.21]


    Главная функция гиббереллинов в растении состоит в стимулировании роста стебля и боковых побегов. При естественном содержании эти фитогормоны участвуют также в регуляции покоя и прорастания семян, в индукции цветения и созревании плодов. Действующие количества веществ при этом весьма низки. Так, в зернах ячменя гибберелловая кислота проявляет эффект уже в концентрации 10 моль/л. [c.193]

    Индукция цветения у растений в условиях нормального 24-часового свето-темнового цикла тоже связана с рядом процессов, из которых одни активируются Фдк, а другие подавляются им. Временную последовательность и продолжительность этих процессов регулируют биологические часы. У растений короткого дня, которые зацветают, когда длина темного периода становится больше критической, реакции, требующие высокого уровня Фдк, протекают днем и в начале ночи реакции, протекающие лучше всего при низких уровнях Фдк, начинаются в более позднее ночное время (рис. 12.12). Раньше многие физиологи думали, что критическая длина темного периода определяется скоростью превращения Фдк в Фк. Однако сейчас это представление кажется уже неверным. По-видимому, критическая длина темного периода зависит от продолжительности процессов, ингибируемых фитохромом Фдк, которые в свою очередь регулируются часами. Таким образом, мы можем видеть, что фотопериодическое измерение времени у растений коротко- [c.370]

    Итак, известно много случаев, когда тот или иной агент вводит в действие определенные участки генетического аппарата. Клетка получает какое-то направление развития. Постараемся более детально сформулировать, что мы имеем в виду под словами направление развития. Когда речь идет, например, о репродуктивном пути, предполагающем образование цветков, весь процесс запускается гормоном цветения. Как только совершился начальный акт индукции цветения, клетки почки далее неуклонно развиваются по этому пути вплоть до образования цветка. Следует ожидать, что но мере развития цветка будут происходить дальнейшие измене- [c.528]

    Индукция цветения ананаса (фактически его вызывает индуцированное ауксином образование этилена). НУК действует обычно как ауксин. [c.440]

    ИНДУКЦИЯ ЦВЕТЕНИЯ Участие фитохрома и часов [c.370]

    Для регулирования роста и продуктивности культур можно использовать химические соединения. Ауксин применяется для стимуляции образования корней, индукции цветения и завязывания плодов, регулирования числа плодов и избирательного умерщвления растений. Гиббереллины повышают урожайность бессемянных сортов винограда улучшают качество цветков и плодов цитрусовых, вишни, яблонь и груш заменяют в некоторых случаях холодовую обработку помогают получать гибридные семена, способствуя образованию цветков только одного пола у однодомных растений повышают выход сахара в сахарном тростнике, а также увеличивают содержание амилазы в солоде, который используется при производстве пива. Цитокинины регулируют старение отделенных органов растения, а этилен— созревание плодов, вытекание латекса, опадение плодов, инициацию цветения и проявление пола. Различные синтетические химикаты могут найти применение в сельском хозяйстве благодаря тому, что они способны подавлять рост придаточных почек, препятствовать избыточному разрастанию стеблей и их полеганию, а также улучшать качество плодов многих важных культур. [c.449]


    Многие процессы развития, которые должны протекать по точному сезонному графику , также зависят от взаимодействия между фитохромом и часами. Эти процессы охватывают весь жизненный цикл зеленого растения, включая переход от вегетативного роста к репродуктивному, образование клубней, индукцию покоя и старение (ри.с. 12.10). Наиболее изученный из этих процессов — индукция цветения. [c.370]

    Роль часов в индукции цветения у растения длинного дня менее ясна. Эти растения, если вы помните, не закладывают цветочных почек до тех пор, пока ночь не будет короче определенной критической длины. Некоторым длиннодневным растениям тоже нужны несколько часов облучения дальним красным светом (710—730 нм) высокой интенсивности в течение каждого 24-часового цикла. Освещение днем широкоспектральным источником света (например, солнцем), который испускает как дальние красные, так и более короткие световые волны, вполне эффективно, так же как и облучение волнами короче 700 нм днем вслед за длинноволновым облучением ночью. Эта потребность в длительном воздействии интенсивного дальнего красного света несколько сходна с реакцией на высокоинтенсивное облучение этиолированных растений (см. [c.372]

    Эффективный период темноты для короткодневного растения можно сделать неэффективным путем простой уловки — достаточно немного укоротить его (всего на несколько минут) или прервать в середине вспышкой слабого света. Это говорит о том, что растение может измерять продолжительность темноты с точностью до нескольких минут и что фотопериодизм связан с работой необычайно чувствительной оветовоспринимающей системы. Короткодневное растение дурнишник цветет при режиме 15 ч света 4-9 ч темноты, но не будет цвести, если темный период составляет 8,5 ч или же 9-часовой темный период прерывается коротким световым периодом (рис. 11.2). Всего лишь один подходящий период темноты может привести к цветению, даже если последующие темные периоды недостаточно длинны. Этот феномен известен как фотопериодичёская индукция. У многих растений длинного дня имеет место аналогичный, но обратно направленный феномен прерывание слишком длинного темного периода вспышкой света приводит к индукции и к заложению цветков. Таким образом, растения длинного и коротко- [c.333]

    Этилен, СНг—СНг, представляет собой ненасыщенный углеводород с низким молекулярным весом. Физиологическую активность ряда аналогов этилена сравнили с активностью самого этилена. Ни один из них ие был так активен, как этилен, независимо от того, рассчитывали ли активность иа концентрацию, выраженную в мг/л или в молях. При расчете в мг/л, например, пропилеи, СНз—СН = СН2, был примерно в 100 раз менее активен, чем этилен активность ацетилена, СН=СН, была меньше чем 1/2800 (за исключением случая индукции цветения ананасов, когда активность ацетилена была столь же высока, как активность этилена), а аллена, СН2 = С=СН2, даже составляла величину менее чем 1/29 000 активности этилена. [c.128]

    Как мы видели, имеются данные о том, что стимул цветения ДДР и КДР идентичен тем пе менее гиббереллины совершенно не эффективны в индукции цветения у большинства КДР- [c.369]

    В настоящее время известно, что гиббереллин вызывает следующие явления I) стимуляцию роста в длину стебля растений листьев, особенно влагалищ листа у злаковых наиболее четко это действие выражено на карликовых и низкорослых сортах растений 2) нарущение покоя у семян, клубней и почек растений 3) усиление гидролиза запасных питательных веществ в эндосперме набухщих семян и, вероятно, в семядолях 4) индукцию стрелкования и цветения у розеточных форм растений, ко- [c.48]

    Для выяснения вопроса о связи динамики гиббереллинов с воздействием длинного дня, с одной стороны, и с фотопериодической индукцией цветения растений — с другой, представлялось интересным проследить за активностью гиббереллинов в листьях Табаков, обладающих противоположной реакцией на длину дня,— длиннодневного сорта Сильвестрис и короткодиевного сорта Мамонт в процессе перехода растений от вегетативного роста к цветению. Растения Табаков выращивали на неблагоприятной для зацветания длине дня табак Сильвестрис на ко- ротком, табак Мамонт на длинном дпе. В возрасте 90 дней, когда растения приобрели способность восприпимать фотоперио-дическое воздействие, им давали благоприятную для цветения индукцию растениям табака Сильвестрис 10, 20, 30 и 40 длиж- [c.284]

    Боннер и сотр. [22] показали, что введение различных ингибиторов биосинтеза стероидов в листья растущих Xanthium pennsylvani um и Pharbitis nil подавляло индукцию цветения под влиянием темнового периода. В то же время ингибируется включение меченого [c.425]

    В опытах с однодольными древесными культурами как гибберелловая кислота (гиббереллин Аз), так и смесь гиббереллинов A4 и А были эффективны в индукции цветения у ordyline terminalis и неэффективны у видов Dra aena [165]. [c.27]

    Условия окружающей среды часто оказывают гораздо более выраженное воздействие на развитие растений, чем на развитие животных. У растений в ходе эволюции сформировались специальные механизмы для восприятия силы тяжести, температуры, интенсивности и продолжительности освещения. Ответы на эти сигналы часто оказываются весьма сложными и могут быть либо быстрыми и кратковременными (как при движении хлоропластов, индуцированном светом, см. разд. 20.4.10), либо медленными и продолжительными (как в случае длинного светового дня, который необходим для индукции цветения некоторых растений или длительного периода охлаждения, необходимого для нрорастания многих семян). [c.435]


    Превращения Фк Фдк действуют как метаболический механизм, включающий и выключающий определенные реакции. Это переключение косвенно регулирует множество биофизических, биохимических, гистологических и морфологических процессов в растениях (рис. 11.11). Многие из наступающих изменений происходят после первого воздействия света на этиолированный проросток, когда некоторая часть его фитохрома переходит в форму Фдк. Эти изменения, обобщенно называемые деэтиоля-цией, помогают растению адаптироваться к свету. При этом изменяется активность многих ферментов и содержание растительных гормонов, из этиопластов развиваются хлоропласты, происходит синтез хлорофилла, каротиноидов и актоциановых пигментов из предшественников. После позеленения этиолированных проростков система фитохромов продолжает влиять на рост и развитие растения в течение всей его жизни. Взаимопревращения Фк и Фдк не только влияют на индукцию цветения у растений как короткого, так и длинного дня, но и участвуют также в регулировании клубнеобразования, покоя, опадения листьев и старения. Однако эффект превращений фитохрома в растениях, выросших на свету, зависит также от времени воздействия света. Чувствительность таких растений к определенным формам фитохрома имеет ритмический характер. Эта интересная проблема будет рассмотрена в следующей главе. [c.343]

    ЧТО конформационные изменения хромофора фитохрома могут одновременно изменять и структуру мембраны. Другие, более медленные и отдаленные эффекты фитохрома, такие как активация генов и онтогенетические изменения, вероятно, могут быть следствием этого инициирующего события но возможно, что фитохром сразу действует не в одном направлении. Как мы увидим в следующей главе, не все контролируемые фитохромом реакции локализованы в пределах одной клетки в некоторых случаях облучение одной части растения влияет на развитие органов, находящихся на некотором расстоянии. Определенные реакции такого типа, контролируемые фитохромом, происходят в этиолированных тканях, но самые яркие примеры касаются фотопериодичеокой индукции цветения, клубнеобразования и покоя (см. гл. 12). Любая гипотеза о механизме действия фитохрома должна объяснять не только локальные, но и пространственно отдаленные реакции. [c.355]

    Первым признаком перехода от вегетативного роста к репродуктивному в период индукции цветения служит повышение синтеза ДНК и митотической активности в апикальной меристеме. Меристема соответственно расширяется и растягивается, развиваются цветочные бугорки. На рис. 12.13 изображены различные морфологические этапы перехода от вегетативного роста к полному цветению у дурнишника (ХапШит). [c.373]

    У некоторых растений, чувствительных к фотопериоду, реакция на длину не прерываемой светом ночи представляет собой феномен типа всё или ничего . Без надлежащих индуцирующих темновых периодов такие растения остаются в вегетативном состоянии неопределенно долго. У короткодневного растения дурнишника для индукции некоторой репродуктивной активности достаточно одного длительного периода темноты, хотя большее число фотоиндуктивных циклов может давать более энергичную реакцию цветения (рис. 12.15). Другие растения короткого дня, такие как соя, нуждаются для инициации цветения примерно в четырех последовательных фотоиндуктивных циклах, а некоторые виды —даже в большем их числе. [c.374]

    Один из удивительных фактов, касающихся индукции цветения,—это то, что она у некоторых растений может быть продлена неограниченно, даже в случае возврата к неблагоприятному фотопериоду. Тогда индуцированное растение может служить источником стимула для цветения — его донором в опытах с прививкой — значительно дольше времени первоначальной индукции. Подвои, индуцированные путем прививки, могут быть донорами флоригена для других растений, даже после отделения от первичного донора. Таким образом, переход от вегетации к размножению, по-видимому, связан с какого-то рода стойкой метаболической трансформацией, ведущей к длительному (и, быть может, неопределенно долгому) образованию фактора, вызывающего цветение. Некоторые авторы высказывали предположение, что это латентный самореплицирующийся фактор, возможно сходный с неактивным вирусом, который переходит в активную форму при соответствующем фотопериоде. В этом случае инициацию цветения можно было бы сравнить с заражением болезнью, распространяющейся от одной особи к [c.378]

    Другой до тех пор, пока дело не кончится самопроизвольным выздоровлением хозяина. Например, у короткодневного растения Perilla минимальная индукция приводит вначале к цветению, но затем при неблагоприятном фотопериоде происходит постепенный возврат к вегетативному росту — растение как бы спонтанно выздоравливает от болезни цветения. Вопрос о природе флоригена и индукции цветения остается интригующей тайной. [c.379]

    Очень малая скорость химических реакций в растении при низких температурах обеспечивает координацию изменений роста с климатическими изменениями. Кроме того, температура влияет на многие процессы, чувствительные к фотопериоду, изменяя критическую длину темного периода, хотя механизм этого явления не выяснен. Так как наличие Фдк ночью могло бы нарушать индукцию цветения у растения короткого дня, можно-было бы ожидать, что высокие ночные температуры, ускоряющие разрушение фитохрома и превращение Фдк в Фк, будут благоприятствовать индукции цветения у таких растений. На самом же деле обычно наблюдается противоположный эффект. Некоторые растения можно заставить цвести с помощью длинных темных ночей или низких ночных температур. Возможно,, что каждое из этих воздействий способно активировать какой-то процесс, ведущий к синтезу флоригена. [c.383]

    Некоторые растения не могут воспринимать фотопериодический Стимул до тех пор, пока они не достигнут стадии, называемой готовностью к цветению до этой стадии они находятся в ювенильном состоянии и обнаруживают ряд морфологических и физиологических отлцчий от зрелых растений. Одни растения на стадии готовности к зацветанию нуждаются лишь в одном-единственном фотоиндуктивном цикле, а другие — в нескольких циклах подряд. У некоторых растений индукция ведет к распространению еще не охарактеризованного внутреннего стимула к цветению (флоригена), переходящего из листа, где он образовался, к почке. Гиббереллин может индуцировать цветение длиннодневных розеточных растений через стрелкование, а для бромелиевых аналогичной активностью обладает ауксин. Фотопериод может контролировать проявление пола в цветках однодомных и двудомных форм, имеющих однополые цветки соответственно на одном и том же или на разных растениях сходное действие могут оказывать гормоны и изменения температуры. [c.388]

    Этап молодости характеризуется полным отсутствием цветения или цветение слабо выражено даже при самых благоприятных для этого условиях. Здесь ярко проявляется роль компетенции, т. е. готовности специфически реагировать на то или иное индуцирующее воздействие. В данном случае ювенильное растение не обладает компетенцией к факторам, вызывающим закладку органов полового или вегетар1Вного размножения. Это может быть связано с отсутствием в органах-мишенях, воспринимающих гормоны, белков-рецепторов, участвующих в индукции генеративного развития. [c.340]

    Индукция. Эта фаза осуществляется под действием экологических факторов — температуры (яровизация) и чередования дня и ночи (фотопериодизм) — или эндогенных факторов, обусловленных возрастом растения. Яровизация — процесс, протекающий в озимых формах однолетних и двулетних растений под действием низких положительных температур определенной длительности, способствующий последующему ускорению развития этих растений. Фотопериодизм — реакция растений на суточный ритм освещения, т. е. на соотношение длины дня и ночи (фотопериоды), выражающаяся в изменении процессов роста и развития. Одно из основных проявлений этой реакции — фотопериодическая индукция зацветания. Оба фактора — температурный и световой — могут действовать последовательно, например у озимых злаков (рожь, пшеница). Температурная и фотопериодическая регуляции служат приспособлением растений к условиям существования, так как обусловливают благоприятные сроки для перехода к зацветанию. В ходе фотопериодической индукции в листьях образуется стимулятор цветения, который транспортируется в вегетативные почки побегов, Где включает вторую фазу инициации — эвокацию. [c.371]

    Ж. Бернье, Ж.-М. Кине и Р. Сакс (1985) выдвинули свою гипотезу индукции и эвокации цветения. По мнению этих авторов, эвокация контролируется не одним каким-то специфическим морфогеном, а сложной системой из нескольких факторов, каждый из которых запускает свою цепь эвокационных процессов. Взаимодействие этих процессов и приводит к закладке цветков. Факторы, участвующие в регуляции эвокации. образуются в разных частях растительного организма, причем они не обязательно идентичны у всех видов. [c.374]

    Половое размножение цветковых растений начинается с индукции цветения, которая может определяться возрастом, а может зависеть от яровизации и (или) фотопериода. По отношению к фотопериодическо-му воздействию растения делятся на нейтральные, длиннодневные, короткодневные, длинно-короткодневные и др. Фотопериодическое воздействие воспринимается листьями и осушествляется при участии фитохрома. Предполагается, что в листьях образуется гормон цветения — флориген, в состав которого входят гиббереллин и антезин. Длиннодневные растения имеют достаточное количество антезина, но им недостает гиббереллина, который синтезируется на длинном дне. Короткодневные растения, наоборот, не испытывают недостатка в гиббереллине, но им необходим антезин, образующийся в условиях короткодневного фотопериода. Флориген поступает в вегетативные апексы и индуцирует их превращение в апексы флоральные (эвокация). Дифференцировка пола у двудольных растений определяется генотипом и гормональным балансом. Дальнейшие этапы полового размножения включают в себя развитие цветка, опыление и оплодотворение, формирование семян и плодов. [c.389]

    Для объяснения устойчивости были предлолееиы две теории. Согласно предположению М. X. Чайлахяна, под влиянием благоприятных условий в листе накапливается гормон цветения, который расходуется постепенно в течение длительного периода даже при неблагоприятных условиях. Другой советский исследователь Б. С. Мошков предположил, что под влиянием благоприятной длины дня в метаболизме листа происходят стойкие изменения, в результате чего он продолжает активно синтезировать гормон цветения даже после перенесения в условия неблагоприятного фотопериода. Р1меющиеся в нашем распоряжении данные говорят в пользу теории Мошкова. В самом деле, кажется маловероятным, чтобы в описанном выше эксперименте Лона в листе, получившем КД- ВОЗдействие и после этого находившемся в условиях ДД в течение 4 нед, гормон цветения оставался в количестве, все еще достаточном для индукции цветения вегетирующего растения, иа которое этот лист был привит. [c.342]

    Установлено, что у растений периллы состояние индукции строго локализовано в пределах растения и далее в пределах отдельных листьев. Так, если одну пару листьев периллы подвергнуть действию ряда КД-Циклов, а остальную часть растения содерлеать в условиях ДД, то оказывается, что только листья, непосредственно получившие КД-воздействие, способны индуцировать цветение у растений, иа которые они привиты (рис. 9.14). В других экспериментах, проведенных Лона, в условиях КД находились лишь половины каледого листа, а другие половины получали ДД. Затем листья разделяли продольно и половинки прививали по отдельности на вегетативные растеиия- рецепторы. Цветение вызывали лишь те половинки, которые непосредственно подвергались действию КД. [c.342]


Смотреть страницы где упоминается термин Цветение индукция: [c.202]    [c.206]    [c.285]    [c.286]    [c.336]    [c.372]    [c.374]    [c.377]    [c.441]    [c.221]    [c.326]    [c.343]    [c.356]    [c.363]    [c.364]    [c.364]    [c.368]   
Жизнь зеленого растения (1983) -- [ c.370 , c.378 , c.440 , c.441 , c.445 ]

Физиология растений (1989) -- [ c.37 , c.371 , c.374 ]




ПОИСК





Смотрите так же термины и статьи:

Ананас, индукция цветения этиленом

Ауксины индукция цветения



© 2024 chem21.info Реклама на сайте