Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

клеточная аномальный клеточный цикл

    Действительно ли клетки измеряют время путем подсчета числа клеточных циклов-это все еще остается предметом гипотез. Что касается сглаживающих межклеточных взаимодействий в мезенхиме, то о них уже есть фактические данные. Бьши проведены эксперименты, сходные с представленными на рис. 15-53 и 15-54, с тем отличием, что пересадки производились между за-чатками примерно на одной и той же ранней стадии развития. В одном из таких опытов сначала удаляли два ранних зачатка конечности на ранних стадиях развития (один отделяли около основания, другой-на более дистальном уровне), а затем маленький дистальный участок, отделенный от второго зачатка, трансплантировали на короткую проксимальную культю первого С помощью такой операции можно, например, получить аномально короткий составной зачаток, ие содержащий клеток, из которых в норме развивается предплечье. В результате образуется конечность, отличающаяся от нормальной, но не так сильно, как если бы каждая из частей составного зачатка вела себя автономно. По-видимому, при сближении мезенхимных клеток, расположенных на разных уровнях проксимодистальной оси, между ними происходит взаимодействие, сглаживающее разрыв в их позиционных значениях, и в результате появляются недостающие промежуточные значения. [c.104]


    Опухолевые клетки нередко обнаруживают аномальную вариабельность формы и размеров ядер (рис. 21-19), а также числа и структуры хромосом и на практике изменения в морфологии ядер являются для патологов одним из ключевых признаков в диагностике рака. Нри культивировании опухолевых клеток их кариотип часто оказывается крайне нестабильным могут наблюдаться амплификация или делеция генов, потеря, дупликация или транслокация хромосом (или их участков) - все это регистрируется с гораздо большей частотой, чем нри культивировании нормальных клеток. С одной стороны, такая вариабельность в числе и структуре хромосом может быть просто следствием ускорения клеточного цикла, возникающего в дифференцированной клетке из-за ее слабой адаптации к быстрой пролиферации. С другой стороны, это может отражать наследуемый дефект в самом механизме или регуляции процессов репарации, ренликации или рекомбинации ДНК, возникающий в результате соматической мутации в любом из множества вовлеченных в эти сложные процессы генов. Такая мутация будет увеличивать вероятность всех последующих мутаций в других группах генов. Поэтому можно ожидать, что описанный механизм является общим для клеток, претерпевших множество мутаций, необходимых для превращения их в злокачественные. Предположим, к примеру, что для трансформации нормальной клетки в опухолевую необходимы три мутации в генах, контролирующих новедение клеток, и что вероятность каждой такой мутации за время жизни человека составляет 10 " на клетку Тогда вероятность того, что одна нормальная клетка успеет (даже за весь указанный промежуток времени) накопить эти три мутации, будет Ю х Ю х 10 = 10 . Но допустим теперь, что скорость мутирования возросла из-за предшествующей мутации [c.463]

    Вторая группа неадекватных реакций на лекарства — фармакологические эффекты через взаимодействие с белками-мищенями, такими, как рецепторы, ферменты, белки сигнальной трансдукции, контроля клеточного цикла и других событий. Молекулярно-генетические исследования показали, что многие гены, кодирующие такие лекарственные мишени, полиморфны. Их мутантные формы приводят соответственно к нарушению специфических взаимодействий лекарства и мишени, а отсюда и к аномальной реакции на уровне организма. [c.240]

    Опухолевые клетки нередко обнаруживают аномальную вариабельность формы и размеров ядер (рис. 21-19), а также числа и структуры хромосом, и на практике изменения в морфологии ядер являются для патологов одним из ключевых признаков в диагностике рака. При культивировании опухолевых клеток их кариотип часто оказывается крайне нестабильным могут наблюдаться амплификация или делеция генов, потеря, дупликация или транслокация хромосом (или их участков) - все это регистрируется с гораздо большей частотой, чем при культивировании нормальных клеток. С одной стороны, такая вариабельность в числе и структуре хромосом может быть просто следствием ускорения клеточного цикла, возникающего в дифференцированной клетке из-за ее слабой адаптации к быстрой пролиферации. С другой стороны, это может отражать наследуемый дефект в самом механизме или регуляции процессов репарации, репликации или рекомбинации ДНК, возникающий в результате соматической мутации в любом из множества вовлеченных в эти сложные процессы генов. Такая мутация будет увеличивать вероятность всех последующих мутаций в других группах генов. Поэтому можно ожидать, что описанный механизм является общим для клеток, претерпевших множество мутаций, необходимых для превращения их в злокачественные. Предположим, к примеру, что для трансформации нормальной клетки в опухолевую необходимы три мутации в генах, контролирующих поведение клеток, и что вероятность каждой такой мутации за время жизни человека составляет 10 на клетку. Тогда вероятность того, что одна нормальная клетка успеет (даже за весь указанный промежуток времени) накопить эти три мутации, будет 10 х 10 х 10 = 10 . Но допустим теперь, что скорость мутирования возросла из-за предшествующей мутации в каком-нибудь из ферментов системы репликации или репарации ДНК и достигла 10 /клетку за время жизни человека. Приняв вероятность этой мутации в системе репарации/репликации стандартной - 10 , мы увидим, что этот путь, который начинается с мутации, увеличивающей мутабильность, приведет к более частому возникновению раковых клеток суммарная вероятность превращения клетки в раков ю составит в течение жизни 10 х 10 " х 10 " х 10 = 10 . Это в 100 раз более вероятно, чемв первом случае, хотя и требует не трех, а четырех мутаций [c.463]


    Одним из наиболее интересных аспектов использования ЭПР в химии является возможность изучения кинетики реакций свободных радикалов в конденсированной фазе и определения 1 онстант скоростей элементарных реакций. К 1957—1958 гг. метод ЭПР стал уже распространенным методом идентификации и изучения строения свободных радикалов в жидкой и твердой фазах, однако он практически не использовался для проведения количественных кинетических экспериментов. В это время по инициативе В. В. Воеводского было поставлено исследование скорости диссоциации гексафенилэтана на трифенилметиль-ные радикалы [1] и проведен цикл исследований реакций свободных радикалов в облученном политетрафторэтилене (тефлоне). Результаты этих пионерских исследований публикуются в настоящей главе. Смысл этих работ заключается не только в количественном определении ряда элементарных констант скоростей реакций фтор алкильного радикала, теплоты распада перекисного радикала, коэффициента диффузии кислорода и т. д., но главным образом в демонстрации возможностей применения ЭПР для количественных кинетических измерений и в разработке методики анализа экспериментальных данных. Публикуемые здесь первые работы по изучению кинетики радикальных реакций в твердой фазе стимулировали дальнейшие иоследования учеников и сотрудников В. В. Воеводского, в которых были изучены специальные классы радикальных реакций [2, 3], построена кинетическая теория радикальных реакций в твердой фазе [4], начато прямое исследование клеточного эффекта [5] и проблемы пространственного распределения радикалов в твердых матрицах [6, 7]. Несомненно, что эти работы оказали также немалое влияние и на другие многочисленные исследования элементарных реакций в конденсированной фазе, выполненные или ведущиеся в Советском Союзе и за рубежом. В результате определения констант скоростей реакций рекомбинации фторалкильных и перекисных радикалов в публикуемых здесь работах В. В. Воеводского был поставлен принципальный вопрос о природе компенсационного эффекта (КЭФ), т. е. о причинах наблюдения аномально больших энергий активаций Е и предэкспоненциальных множителей ко, связанных между собой зависимостью типа ко=А+ВЕ. В. В. Воеводским было высказано предположение, что КЭФ наблюдается в результате того, что зависимость к от температуры не является аррениусовской Е падает с ростом температуры), но это отклонение не может быть замечено в обычных экспериментах. Позднее учениками В. В. Воеводского были прове- [c.250]

    Системным программистам хорошо известно, что даже небольшие изменения программы могут существенно повлиять на результаты ее реализации. Точно также мутация одного контролируюшего гена приводит к грубому искажению родословного древа. Это положение хорошо иллюстрируется гак называемыми гетерохронными мутациями, в результате которых некоторые наборы клеток ведут себя согласно правилам, действующим на ином этапе нормального развития. Например, дочерняя клетка может вести себя подобно материнской или еще более ранним нредшественницам, а ее потомки воспроизводят свойственный им фенотип и г. д. Таким образом, фрагмент генеалогического древа воспроизводится несколько раз и развитие всего организма нарушается. Для объяснения этого феномена на рис. 16-35 представлены эффекты серии мутаций гена Пп-14. Вместо того чтобы следовать нормальной схеме клеточной дифференцировки. характеризующей последовательную смену 1-го. 2-го, 3-го и 4-го личиночных возрастов с последующим торможением делений, многие клетки мутантов по Ип-14 воспроизводят схему, характерную для 1-го личиночного возраста, проходя по 5-6 циклов линьки и продолжая производить кутикулу незрелого типа. Другие мутации этого гена имеют обратный эффект, вынуждая клетки достигать зрелого состояния преждевременно, что сопровождается утратой промежуточных стадий. В результате животное достигает дефинитивной стадии, обладая аномально малым количеством клеток. Такое преждевременное развитие реализуется у мутантов, характеризуемых дефицитом нормальной активности Ип-14 задержки развития наблюдаются у мутантов с аномально высоким уровнем активности данного гена. Таким образом, эффект продукта гена Нп-14 состоит как бы в поддержании клеток в молодом состоянии и, по всей вероятности, нормальное развитие подразумевает постепенное ограничение синтеза этого продукта по мере взросления животных. [c.90]

    Существуют два механизма превращения протоонкогена в онкоген при включении его в ретровирус изменение носледовательности или фрагментация гена, в результате чего на нем синтезируется белок с аномальной активностью, или попадание его (протоонкогена) под контроль мощных вирусных промоторов и энхансеров. что приводш к избыточному накоплению продукта или созданию неподходящих условий для его функционирования часто происходит и то, и другое. Сходный онкогенный эффект ретровирусы могут оказывать и другим способом, без захвата клеточных генов и переноса их из клетки в клетку ДПК-конии вирусной РПК могут просто встраиваться в геном клетки рядом с протоонкогенами или даже внутри их. Этот феномен называется вставочным (инсерционным) мутагенезом, а измененный таким образом геном наследуется всеми потомками данной клетки. Вообще, случайное встраивание ДПК-коний вирусной РПК в геном клетки - часть нормального жизненного цикла ретровируса, и если оно происходит в пределах 10 тыс. пар оснований от протоонкогена, то может вызвать аномальную активацию нарушенного встраиванием гена Вставочный мутагенез дает возможность идентифицировать нротоонкогены за счет их близости к встроенному ретровирусу. Выявленные таким способом нротоонкогены оказывались теми же, которые обнаруживали и другими методами, но были среди них и новые (табл. 21-5), например, ген int-l, активируемый у мышей, зараженных вирусом опухоли молочных желез [c.469]


    В момент заражения монослой должен быть еще не плотным. Для некоторых рабдовирусов иногда трудно обеспечить строгую синхронизацию, необходимую для прохождения одного цикла размножения, даже при очень высокой множественности инфекции. Тем не менее инфицирование клеток большим количеством вируса для того, чтобы заразить каждую клетку, позволяет приблизиться к таким условиям. Действительно, если все клетки заражены, то, естественно, может пройти только один цикл репродукции вируса. Однако существует и верхний предел множественности инфекции. При очень высокой множественности может наблюдаться аномальная картина размножения вируса, обусловленная накоплением дефектных интерферирующих частиц (см. разд. 3.1.1) и реадсорбцией вирионов потомства на клеточном дебрисе. По-видимому, лучше всего в первом опыте использовать множественность инфекции 10 БОЕ/кл, а затем в случае необходимости увеличивать или уменьшать ее в 10 раз. Можно добавить к вирусу или культуральной среде некоторые полиионы для стимуляции связывания вируса с клетками и повышения инфекционности [13]. Такое стимулирующее воздействие оказывают диэтиламиноэтил (ДЭАЭ)-декстран и протаминсульфат в концентрациях 50 и 100 мкг/мл соответственно, если их добавляют к клеткам до внесения вируса (за 4 ч или менее). После внесения вируса полиионы не оказывают стимулирующего действия. Важно отметить, что некоторые полиионы хотя и способствуют адсорб- [c.114]


Смотреть страницы где упоминается термин клеточная аномальный клеточный цикл: [c.146]    [c.91]    [c.469]   
Генетика человека Т.3 (1990) -- [ c.135 ]




ПОИСК







© 2024 chem21.info Реклама на сайте