Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Рекомбинация перекисных свободных радикалов

    В реакциях окисления молекулярным кислородом, как и в других цеиных процессах, обрыв реакционной цепи осуществляется не только путем рекомбинации радикалов, но и вследствие их взаимодействия с ингибиторами. Механизм действия значительной группы ингибиторов удовлетворительно объясняется теорией цепных реакций И. И. Семенова, согласно которой обрыв цепи ингибиторами можно рассматривать как частный случай передачи цепи с образованием менее активного свободного радикала [1, 2]. Такой механизм вполне приемлем для ингибиторов, в молекуле которых содержится подвижный атом водорода. Однако имеющийся в литературе опытный материал показывает, что ингибиторами окисления молекулярным кислородом могут служить вещества самой различной химической природы (фенолы, амины, аминофенолы, органические и минеральные кислоты, вода, хиноны, сульфиды и др.). Кроме того, нужно учитывать, что в реальных условиях автоокислепия углеводородов в реакционной среде возможно одновременное существование не только свободных радикалов типа R, R0, ROO, НО, Н00 , но и неустойчивых перекисных соединений типа ROOR, которые в свою очередь могут непосредственно реагировать с молекулами ингибитора. [c.94]


    Современные воззрения на механизм действия антиокислителей в бензинах основываются на перекисной теории окисления с цепным механизмом. Процессы окисления углеводородов относят к цепным вырожденно-разветвленным реакциям. Общепринятая и наиболее обоснованная в настоящее время схема предполагает, что образовавшийся в начальной стадии окисления свободный углеводородный радикал R- вступает в реакцию с кислородом, образуя перекисный радикал ROO-, который, реагируя с новой молекулой углеводорода, дает гидроперекись и новый радикал. Разложение гидроперекиси приводит к разветвлению цепи, поэтому реакция носит автокатали-тический характер. Обрыв цепей в среде без антиокислителей происходит, главным образом, вследствие рекомбинации радикалов. [c.232]

    Эта схема включает элементарные стадии зарождения цепи (образование первичных свободных радикалов) продолжения цепи, включающее образование перекисного радикала ROg и промежуточной (баховской) перекиси ROOH разветвления цепи (распад промежуточной перекиси на свободные радикалы RO и ОН—так называемое вырожденное разветвление, запаздывающее по отношению ко времени развития основной цепи) молекулярного распада перекиси с образованием разнообразных продуктов окисления и стадию обрыва цепи, представляющую собой рекомбинацию радикалов ROg. [c.376]

    Одним из наиболее интересных аспектов использования ЭПР в химии является возможность изучения кинетики реакций свободных радикалов в конденсированной фазе и определения 1 онстант скоростей элементарных реакций. К 1957—1958 гг. метод ЭПР стал уже распространенным методом идентификации и изучения строения свободных радикалов в жидкой и твердой фазах, однако он практически не использовался для проведения количественных кинетических экспериментов. В это время по инициативе В. В. Воеводского было поставлено исследование скорости диссоциации гексафенилэтана на трифенилметиль-ные радикалы [1] и проведен цикл исследований реакций свободных радикалов в облученном политетрафторэтилене (тефлоне). Результаты этих пионерских исследований публикуются в настоящей главе. Смысл этих работ заключается не только в количественном определении ряда элементарных констант скоростей реакций фтор алкильного радикала, теплоты распада перекисного радикала, коэффициента диффузии кислорода и т. д., но главным образом в демонстрации возможностей применения ЭПР для количественных кинетических измерений и в разработке методики анализа экспериментальных данных. Публикуемые здесь первые работы по изучению кинетики радикальных реакций в твердой фазе стимулировали дальнейшие иоследования учеников и сотрудников В. В. Воеводского, в которых были изучены специальные классы радикальных реакций [2, 3], построена кинетическая теория радикальных реакций в твердой фазе [4], начато прямое исследование клеточного эффекта [5] и проблемы пространственного распределения радикалов в твердых матрицах [6, 7]. Несомненно, что эти работы оказали также немалое влияние и на другие многочисленные исследования элементарных реакций в конденсированной фазе, выполненные или ведущиеся в Советском Союзе и за рубежом. В результате определения констант скоростей реакций рекомбинации фторалкильных и перекисных радикалов в публикуемых здесь работах В. В. Воеводского был поставлен принципальный вопрос о природе компенсационного эффекта (КЭФ), т. е. о причинах наблюдения аномально больших энергий активаций Е и предэкспоненциальных множителей ко, связанных между собой зависимостью типа ко=А+ВЕ. В. В. Воеводским было высказано предположение, что КЭФ наблюдается в результате того, что зависимость к от температуры не является аррениусовской Е падает с ростом температуры), но это отклонение не может быть замечено в обычных экспериментах. Позднее учениками В. В. Воеводского были прове- [c.250]


    В течение последних лет метод ЭПР был с успехом применен для выяснения строения свободных радикалов, образующихся при воздействии ионизирующего излучения на твердые вещества. При этом было обнаружено, что стабильность свободных радикалов и, следовательно, их максимальная концентрация сильно зависят как от свойств самих образующихся радикалов, так и от свойств твердой матрицы, окружающей их. Наиболее существенным параметром, характеризующим свойства матрицы по отношению к рекомбинации радикалов, является коэффициент диффузии отдельных молекул в матрице. Для изучения же химической активности радикалов в да ниой матрице необходимо было найти пути измерения констант скоростей отдельных элементарных реакций этих радикалов, исключив при этом влияние диффузии. Решение этих общих задач было предпринято нами на примере исследования свойств радикальной системы, образующейся при облучении политетрафторэтилена (тефлона) [9]. Ранее было показано [10, 11], что под воздействием излучения в этом веществе образуются весьма устойчивые радикалы, способные при взаимодействии с кислородом переходить также в устойчивые перекисные радикалы. Возможность точного измерения по ходу процесса изменений концентраций обоих радикалов методом ЭПР привела нас к мысли о том, что именно на этом примере может быть проведено разделение диффузии и процесса взаимодействия радикала с молекулами из газовой фазы. В настоящем сообщении описываются некоторые особенности применявшихся нами кинетических измерений при помощи метода ЭПР и приводятся результаты по определению коэффициента диффузии кислорода в тефлон. Поскольку таких данных, насколько нам известно, в литературе не имеется, они могут иметь и самостоятельный интерес. С другой стороны, определение точных значений коэффициента диффузии кислорода в тефлоне позволило, как это будет показано в следующем сообщении, опреде- [c.251]


Смотреть страницы где упоминается термин Рекомбинация перекисных свободных радикалов: [c.45]   
Биофизика (1983) -- [ c.48 ]




ПОИСК





Смотрите так же термины и статьи:

Радикал рекомбинация

Рекомбинация

Рекомбинация перекисных свободных

Рекомбинация свободных радикало

Свободные радикалы

Свободные радикалы ион-радикалы



© 2025 chem21.info Реклама на сайте