Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Деструкция при воздействии ионизирующих излучений

    В книге описываются свойства ионизирующих излучений и вызываемые этими излучениями химические процессы. Рассмотрены общие вопросы радиационной химии полимеров. Дано статистическое толкование процессов образования поперечных связей к деструкции молекул при воздействии ионизирующего излучения на различные полимеры. Подробно обсуждено действие излучений на полимеры углеводородов, на акрилаты и метакрилаты, смешанные кислородсодержащие полимеры, хлор- и фторсодержащие полимеры, диолефины. Освещен вопрос [c.4]


    Присутствие кислорода ускоряет деструкцию некоторых полимеров под воздействием ионизирующих излучений, однако в других случаях наблюдается малый эффект или полное его отсутствие. Для некоторых полимеров получаются противоречивые данные. Например, степень деструкции главных цепей поли-изобутилеиа [21, а] оказывается одной и той же, независимо от того, облучаются ли они в воздухе, азоте или в вакууме, хотя присутствие кислорода может влиять на характер продуктов деструкции [21, а]. Деструкция полиметилметакрилата в присутствии кислорода по литературным данным не изменяется [20] или даже замедляется [21,6]. Ни один из этих полимеров не претерпевает сшивания независимо от присутствия или отсутствия кислорода (см. стр. 133 и 147). Наоборот, полиметакриловая кислота в водном растворе претерпевает деструкцию под действием рентгеновских лучей лишь в присутствии кислорода [c.68]

    Па П. X. в. и изменение ее во времени большое влияние оказывает окружающая среда. Влага, органич. жидкости или др. пластификаторы повышают подвижность структурных элементов волокон и приводят к росту удлинения при разрыве, понижению П. и модуля. Химич. реагенты, фотохимич. воздействия, ионизирующее излучение приводят к деструкции, уменьшению мол. массы, изменению химич. строения макромолекул и снижению П. Сшивание обычно не сопряжено с понижением П. X. в. (если при этом не происходит заметная перестройка надмолекулярной структуры), но повышает модуль. В результате химической модификации П. X. в. обычно резко снижается как из-за значительного изменения надмолекулярной структуры волокна и уменьшения числа проходных цепей на единицу сечения волокна, так и из-за протекания одновременно с модификацией процессов деструкции и пластификации. [c.119]

    Сшивание молекул влечет за собой увеличение относительной молекулярной массы полимера, а деструкция — ее уменьшение. Сшивание и деструкция могут происходить одновременно с преобладанием одного из этих процессов на том или ином этапе облучения (например, при длительной радиации преобладает деструкция материала). Образование нового вида межатомной связи (поперечной связи) у большинства пластмасс можно рассматривать как следствие ионизации, легко возникающей у этих материалов при различных видах облучения [28]. При воздействии ионизирующих излучений на пластмассы (независимо от его характера) решающим фактором является количество энергии [30]. Сшивание цепочек молекул для большинства пластмасс увеличивает прочность и теплостойкость материалов и снижает пластичность, и, наоборот, распад молекул материала или деструкция вызывает уменьшение прочностных показателей [13]. [c.10]


    Известно [393, 394], что кислородсодержащие группы в полимерах, низкомолекулярных веществах и, вероятно, в техническом углероде при воздействии ионизирующего излучения-могут захватывать электроны с образованием анионов. При-взаимодействии последних с положительными зарядами, возникающими на стадии ионизации каучуков (например, СКН-26,,. СКБ-40 и др.), вероятно, происходит образование возбужденных молекул, распад которых может привести к деструкции полимерных цепей и, следовательно, к снижению эффективности сшивания. Это возможно в случае участия заряженных частиц в радиационном сшивании полимерных цепей каучука в вакууме. При доступе воздуха кислород практически нивелирует разницу в действии указанных марок технического углерода при радиационной вулканизации каучука. Вероятно, поэтому тип используемого в резинах технического углерода (за исключением ДМГ-80) не имеет столь существенного значения для их радиационной стойкости [339]. [c.181]

    Воздействие ионизирующих излучений на полимеры в последнее время служит предметом интересных исследований. Наиболее детально изучен в этом отношении полиэтилен [13]. Установлено, что облучение полиэтилена приводит к образованию поперечных связей между молекулами полимера (сшивание) и к появлению двойных связей, а также к разрыву полимерных молекул (деструкция). Эти процессы сопровождаются выделением газов, из которых 96% составляет водород, а остальную часть — углеводороды преимущественно с низким молекулярным весом. [c.299]

    Модификация полиэтилена радиационным облучением — хорошо изученный процесс [82, с. 13]. При воздействии ионизирующих излучений на полиэтилен происходит возбуждение и ионизация молекул. В этих макромолекулах могут возникать свободные радикалы, которые, взаимодействуя с полимерной цепью, образуют поперечные связи (сшивание). Вместе с тем при облучении может происходить деструкция макромолекул полиэтилена с образованием летучих продуктов и молекул меньшей длины, вплоть до превращения полимера в вязкую жидкость. [c.68]

    Стабилизаторы. Эти вещества служат для защиты полимерных материалов от деструкции, вызываемой действием окислителей, света, ионизирующего излучения, механическими воздействиями и др. Их вводят в полимер в небольших количествах для длительного сохранения его потребительских свойств. Ассортимент стабилизаторов полимерных материалов насчитывает около 2000 веществ, являющихся большей частью органическими соединениями. [c.10]

    Деструкция, являясь одним из видов старения полимеров, — довольно распространенная реакция в химии высокомолекулярных соединений. Она может играть как положительную роль (например, для установления строения полимеров, получения некоторых индивидуальных веществ из природных полимеров аминокислот из белков, глюкозы из крахмала и целлюлозы и т. д.), так и отрицательную. Являясь необратимой химической реакцией, деструкция приводит к нежелательным изменениям в структуре полимеров при их эксплуатации. Это необходимо учитывать при использовании полимерных материалов в строительстве, когда они подвергаются многим неизбежным отрицательным воздействиям. Факторы, приводящие к деструкции полимеров, можно разделить на физические (тепло, свет, ионизирующее излучение, механическая энергия и др.) и химические (гидролиз, алкоголиз, окисление и т. д.). [c.409]

    Деструкция полимеров может протекать под действием химических агентов (воды, кислот, спиртов, кислорода и т. д.) или под влиянием физических воздействий (тепла, света, ионизирующего излучения, механической энергии и т. д.). [c.264]

    Деструкция полимеров под влиянием тепловой и световой энергии, ионизирующего излучения и механохимических воздействий протекает по цепному механизму с промежуточным образованием свободных радикалов. [c.282]

    Окисление под действием О2 и О3, ускоряющееся при воздействии света и нагревании, вызывает деструкцию и структурирование (сшивание) К. с. Для защиты от окисления в них вводят антиоксиданты в кол-ве 0,15-2,0% по массе. Гарантийный срок хранения К. с. составляет обычно 0,5-2 г. Термостойкость К. с. выше, чем НК. Наиб, термостойки каучуки с неорг. основной цепью (напр, кремнийорганические) и фторкаучуки. Под действием ионизирующих излучений большинство К. с. сшивается бутилкаучук и полиизобутилен, содержащие в цепи четвертичные атомы С, деструктируются. [c.357]

    Давая гигиеническую оценку пластмасс, врач должен учесть, наконец, также и возможность ее деструкции в процессе эксплуатации. Под деструкцией понимают частичное разрушение полимера, протекающее с разрывом связей основной молекулярной цепи. Деструкция полимера может протекать под действием химических агентов (воды, кислот, щелочей, спиртов, кислорода и т. д.) или под влиянием механических воздействий, тепла, света, ионизирующего излучения и т. д. Химическая деструкция наиболее характерна для гетероцепных полимеров и протекает обычно избирательно — с разрывом связи углерод — гетероатом. Конечным продуктом химической деструкции является обычно мономер. [c.328]


    При действии малых статически приложенных внешних сил наблюдается течение вулкаиизатов даже с очень плотными сетками, например эбонитов, а также с очень прочными химическими связями, например вулкаиизатов на основе сополимера этилена с полипропиленом, пространственная сетка которых построена из прочных связей С—С. Действующие силы невелики, я распад трехмерной сетки в этом случае происходит в основном не благодаря механической деструкции, а под воздействием тепла, кислорода, ионизирующих излучений или других факторов. [c.239]

    Старение начинается уже при переработке полимеров в изделия, так как применяемые при этом нагревание материала до необ- ходимой степени размягчения и механические воздействия дают начало процессам деструкции, резко ухудшаюЩим свойства полимеров. При эксплуатации изделий из полимерных материалов, которая часто продолжается очень длительное время, старение полимеров углубляется под воздействием различных факторов внешней среды — кислорода воздуха, тепла, холода, механических напряжений, ионизирующего излучения, воды, химических растворов, пищевых продуктов. Полимеры становятся хрупкими, теряют прочность, изменяют окраску, прозрачность, растворимость, запах и некоторые химические свойства. [c.159]

    Деструкция полимеров обычно протекает под действием химических агентов (воды, спиртов, кислот, кислорода и т. д.) или под влиянием физических воздействий (тепла, света, ионизирующего излучения, механической энергии и т. д.) [2, с. 119 25]. Все эти процессы неизменно связаны с выделением из пластмасс во внешнюю среду вредных химических веществ — продуктов деструкции. [c.26]

    Такие интересные вопросы, как изменение полимеров под влиянием ионизирующих излучений, деструкция под влиянием механических воздействий, разложение при действии ультразвука, несмотря на их большое практическое значение в данной книге не рассматриваются. [c.8]

    Радиационная обработка сшивающихся полимеров приводит к образованию пространственной структуры, переводит полимеры в неплавкое и нерастворимое состояние, т. е. повышает их теплостойкость. Однако действие ионизирующих излучений высокой энергии на полимеры, в том числе и на сшивающиеся, не ограничивается только образованием поперечных связей между макромолекулами, но сопровождается и рядом других необратимых изменений в химическом строении полимера, что осложняет прогнозирование воздействия излучения на их термостабильность вообще, и на стойкость к термоокислительной деструкции в частности. В то же время общие закономерности деструкции полимеров как необлученных, так и облученных в значительной мере сохраняются. [c.15]

    Под воздействием ионизирующих излучений ПВФ претерпевает процессы структурирования и деструкции. Последняя протекает медленнее, чем у ПТФЭ. При исследовании ПВФ методами рентгеновской дифракции при у-облучении °Со доза.ми [c.74]

    Радиационная стойкость сополимеров ТФХЭ — ВДФ сравнительно низка. Фторопласт-ЗМ выдерживает облучение дозой 0,24 МДж/кг (24 Мрад). Так как в молекулярных цепях одновременно присутствуют пергалогенированные звенья и метиленовые группы, воздействие ионизирующего излучения вызывает как деструкцию, так и сшивание цепей сополимера [45, с, 105— 109], Сшивание происходит вследствие рекомбинации полимерных радикалов, образующихся за счет разрыва связей —СН, — F и — I [54]. С увеличением содержания ВДФ эффектив-, ность сшивания п стойкость сополимера к радиации возрастают. Сополимер с содержанием 70% (мол.) ВДФ выдерживает облучение дозой 0,60 МДж/кг (60 Мрад), при этом разрушающее напряжение прн растяжении, относительное удлинение при разрыве и твердость снижаются на 36,4 14,8 и 10,87о соответственно [55, с. 303]. [c.162]

    Для сравнительной оценки эффекта сшивания чистого ПВХ и полимера в двух- и трехкомпоневтной системах использовали термомеханический метод. Метод оказался весьма чувствительным и эффективным для изучения быстроты развития и направленности процессов структурирования и деструкции в исследуемых полимерных системах в условиях воздействия ионизирующих излучений [5]. [c.297]

    М. А. Закирова. Из литературных и экспериментальных данных известно, что в полимерах, в том числе и в резинах, при воздействии ионизирующего излучения одновременно протекают два процесса — структурирование и деструкция. Причем у одних полимеров преобладает деструкция (полиизобутилен, бутилкаучук и др.), у других (СКН, найрит и др.) преобладает структурирование. [c.389]

    Как полагают авторы , механизм фотоокислительной деструкции ПЭТФ не отличается от известных механизмов окисления полимеров при воздействии ионизирующих излучений .  [c.88]

    Радиационная стойкость ППУ. Воздействие ионизирующих излучений вызывает существенное изменение свойств полимеров радиационное окисление, радиационную аморфизацию кристаллических полимеров, сшивку, деструкцию [21]. Влияние этих факторов на характеристики пенопластов изучали на следующих ППУ жестких ППУ-3 (на сложных полиэфирах) и ППУ-307 (на простых полиэфирах), полуэластичных ППУ-202-1 и ППУ-202 одновременно исследовали пеноэпоксид ПЭ-8 и пе-яополиэтилен ППЭ-2 [21]. Образцы облучали на установке РХ-у-ЗОс изотопом °Со. Установлено, что ионизирующее излучение небольшими дозами не приводит к заметным (более погрешности измерения) изменениям линейных размеров пено-иластов. [c.22]

    Радиационная стойкость. Под воздействием ионизирующих излучений в ПВДФ происходят радиационно-химические превращения, влияющие на свойства полимера. При у-облучении ПВДФ в вакууме преобладает в основном сшивание молекулярных цепей, при у-облучении большими дозами на воздухе происходит преимущественно радиационно-окислительная деструкция [164]. Наряду с этими процессами под воздействием у-излу-чения изменяется степень кристалличности, растворимость и диэлектрические свойства ПВДФ в зависимости от дозы излучения [164]  [c.86]

    В настоящее время трудно представить, что такие отрасли промышленности, как гидрометаллургия, тонкий органический синтез, ядерная технология, и такие процессы, как водоподго-товка на тепловых и атомных электростанциях, очистка сточных вод и теплоносителя ядерных реакторов от радиоактивных примесей и др., могут существовать без применения ионитов. Большинство процессов в перечисленных отраслях промышленности осуществляется при повышенных температурах, в агрессивных средах или при воздействии ионизирующих излучений. При продолжительном использовании ионитов происходит необратимое изменение их физико-химических и технологических свойств, обусловленное деструкцией полимерной матрицы или функциональных групп. Из трех составляющих компонентов набухшего ионита (полимерная матрица, функциональные группы, вода) наименее стойки функциональные группы. Поэтому основное внимание при. исследовании термической, химической и радиационной стойкости ионитов уделяется механизму и кинетике разрушения или отщепления функциональных групп. Матрица ионитов, построенная обычно на основе карбодепных полимеров, характеризуется значительно большей термической и радиационной стойкостью (но меньшей стабильностью в окислительных средах) чем функциональные группы. Вода, несомненно, наиболее устойчивый компонент в составе набухшего ионита, но в ее присутствии стойкость функциональных групп и матрицы понижается. [c.6]

    Большую роль при С.п. играют внеш. факторы-т-ра, свет, ионизирующее излучение, мех. воздействие, химически и биологически агрессивные среды. В зависимости от того, какой из факторов преобладает, различают термическое С.п., световое, или фотостарение, радиационное С.п., мех. и хим. деструкцию, биологическое С. п. Особо следует отметить С.п. под действием широко распространенных комплексов внеш. факторов, таких, как климат (климатическое С. п.), космос, а также сочетание любых видов С. п. с окислением кислородом воздуха (напр., термоокислительное и фо-тоокислительное С.п,). Выделяют также спец. виды С.п. в условиях переработки, истирания, абляции, хранения, транспортирования и т. п. [c.415]

    При внешних воздействиях наблюдается также изменение содержания в ПЭВД связей -С=С-. Так, под действием повышенной температуры несколько возрастает содержание гранс-виниленовых групп. При действии ионизирующих излучений содержание этих групп возрастает значительно. Действие УФ-излучения вызывает значительный рост содержания винильных групп, увеличивается при зтом и число транс-ъ Я-ниленовых групп. При всех видах этих воздействий содержание винилиденовых групп убывает. Одновременно протекают процессы деструкции макромолекул, приводящие к уменьшению молекулярной массы полимера, а также процессы структурирования, сшивания макромолекул с образованием трехмерной сетки. Соотношение скоростей процессов деструкции и структурирования зависит от характера и условий внешних воздействий. [c.165]

    Полимеры под действием тепла, света, кислорода воздуха и ионизирующих излучений претерпевают изменения, вызывающие ухудшение их физико-механических свойств. Для защиты от этих нежелательных воздействий применяют стабилизаторы (антиоксиданты, термо- и светостабилизаторы, антиозонанты и др.), концентрации которых, необходимые для стабилизации полимеров разных типов, различны и строго регламентированы. Поэтому анализ полимеров на стойкость к процессам старения, на содержание антиоксидантов и све-тостабилизаторов, установление их типа имеют большое значение и входят в план аналитического контроля производства полимерных материалов. Наибольшее влияние на изменение структуры и ухудшение свойств каучуков оказывают протекающие в них процессы старения, обусловленные, как правило, деструкцией полимерных цепей [I]. [c.389]

    Химические превращения, протекающие в полимерах при действии на них лучистой энергии, уже давно интересовали человека. До последнего времени из различных видов излучений внимание исследователей привлекал главным образом свет. Та роль, которую играет свет в биохимических превращениях полимеров, а также в процессах их деструкции или старения, определяет необходимость того, что в будущем, как это было и в прошлом, большое число исследований в области полимерной химии будет по-прежнему посвящено исследованию фотохимических проблем. Преобладающее значение при этом приобретают работы по использованию световых воздействий в определенных контролируемых условиях для модификации свойств полимеров. Однако в последнее десятилетие еще более интенсивно, чем фотохимические превращения полимеров, исследовались вопросы взаимодействия полимерных веществ с ионизирующими излучениями (излучениями высокой энергии). Развитие исследований в этой области в большой степени связано с созданием промышленной ядерной технологии и новых более совершенных электронных и ионных ускорителей. Но оно было вызвано также и тем ожидаемым многообразием химических реакций, протекание которых должно стать возможным под действием излучений высокой энергии. Одновременное присутствие электронов, ионов, свободных радикалов и молекул в возбужденных и термолизованных состояниях явилось причиной появления многочисленных гипотез, имеющих целью объяснение наблюдаемых радиационно-химических превращений. Все более сложные экспериментальные исследования обеспечили получение данных, которые позволяли проверять и изменять эти гипотезы. Как будет видно из дальнейшего рассмотрения, ни один из предложенных механизмов нельзя считать однозначно доказанным. [c.95]

    Процессы образования в полимерах поперечных связей под действием частиц высокой энергии и ионизирующего излучения представляют большой научный интерес в сравнении с процессами деструкции (см. гл. VIП-В), вызываемыми этими же воздействиями. Многие синтетические полимеры нашли практическое применение после того, как они были сшиты под действием радиационного облучения. Кроме того, образование поперечных связей дает возможность понять природу химических процессов, протекающих при облучении и могущих привести к улучгпенпю физических свойств полимера. Эти положения особенно бесспорны для процесса сшивания полиэтилена под действием радиации. До открытия методов радиационного сшивания не было известно простых способов образования поперечных связей в полимерах этого типа. Последующее развитие химических методов сшивания полиэтилена не снизило значительных преимуществ радиационного процесса. Однако первоначальным стимулом развития радиационно-химических исследований полиэтилена являлась нерспек-тива изучения этих процессов на полимере простого строения. [c.166]

    При различных воздействиях вальцевании, помоле в шаровой мельнице, вибропомоле, а также ультразвуковом озвучивании ПИБ подвергается механо- и механохимической деструкции [228, 229]. Процесс сопровождается уменьшением молекулярной массы до некоторого предельного значения, зависящего от исходной молекулярной массы полимера и условий деструкции. ММР продуктов также изменяется в ходе реакции, причем характер конечного распределения зависит от природы полимера. Хотя распад макромолекул ПИБ, как и под действием ионизирующих излучений, происходит, вероятнее всего, по закону случая, хи- [c.120]

    БК достаточно стоек к действию кислорода, мало подвержен структурным изменениям под влиянием солей металлов переменной валентности. При воздействии УФ-света, ионизирующих излучений и механических нагрузок он заметно деструктируется. БК стоек к действию воды, кислот, некоторых растительных масел и т. д. Легко реагирует с галогенами на свету реакция сопровождается быстрым ул1еньшеннем молекулярной массы. При частичном галогенировании в мягких условиях в растворе (290 К) галоген реагирует с макромолекулайи, не вызывая глубокой деструкции БК. На этой реакции основан промышленный синтез галогенированных БК. [c.169]

    Важные для пленочных материалов свойства могут быть приданы им в процессе радиационной обработки (Р- и 7-излучения). Результаты воздействия радиации на полимер зависят в первую очередь от его химического строения. Одни полимеры (например, полиэтилен) под действием ионизирующих излучений преимущественно спшваются, другие (полиизобутилен и др.) — деструктируются, в третьих (полипропилен) — одновременно протекают с близкими скоростями реакции спшвания и деструкции. Имеются также полимеры (например, полистирол), отличающиеся повышенной радиационной стойкостью и требующие для обработки слишком высоких доз излучения. [c.159]

    Целлюлоза, как и большинство других типов гетероцеп-ных полимеров, недостаточно устойчива к радиационным воздействиям. При действии ионизирующих излучений на целлюлозу происходит разрыв различных связей в элементарном звене, а также между звеньями, что приводит к развитию цепного процесса, протекающего по радикальному механизму, результатом которого является деструкция макромолекул целлюлозы. [c.191]


Смотреть страницы где упоминается термин Деструкция при воздействии ионизирующих излучений: [c.86]    [c.145]    [c.208]    [c.122]    [c.371]    [c.64]    [c.291]   
Смотреть главы в:

Коррозия пластических материалов и резин -> Деструкция при воздействии ионизирующих излучений




ПОИСК





Смотрите так же термины и статьи:

Воздействие излучения

Излучения ионизирующи

Ионизирующие излучения



© 2024 chem21.info Реклама на сайте